Solve for y
y=-\frac{2x^{2}-3x+2012}{1-x}
x\neq 1
Solve for x (complex solution)
x=\frac{\sqrt{y^{2}-2y-16087}+y+3}{4}
x=\frac{-\sqrt{y^{2}-2y-16087}+y+3}{4}
Solve for x
x=\frac{\sqrt{y^{2}-2y-16087}+y+3}{4}
x=\frac{-\sqrt{y^{2}-2y-16087}+y+3}{4}\text{, }y\geq 2\sqrt{4022}+1\text{ or }y\leq 1-2\sqrt{4022}
Graph
Share
Copied to clipboard
-xy-3x+y+2012=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
-xy+y+2012=-2x^{2}+3x
Add 3x to both sides.
-xy+y=-2x^{2}+3x-2012
Subtract 2012 from both sides.
\left(-x+1\right)y=-2x^{2}+3x-2012
Combine all terms containing y.
\left(1-x\right)y=-2x^{2}+3x-2012
The equation is in standard form.
\frac{\left(1-x\right)y}{1-x}=\frac{-2x^{2}+3x-2012}{1-x}
Divide both sides by -x+1.
y=\frac{-2x^{2}+3x-2012}{1-x}
Dividing by -x+1 undoes the multiplication by -x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}