2 x ^ { 2 } - x y + y ^ { 2 } = 16 \quad P ( 3,2 )
Solve for P
P=\frac{5\left(2x^{2}-xy+y^{2}\right)}{256}
Solve for x
x=\frac{\sqrt{10240P-175y^{2}}}{20}+\frac{y}{4}
x=-\frac{\sqrt{10240P-175y^{2}}}{20}+\frac{y}{4}\text{, }P\geq \frac{35y^{2}}{2048}
Graph
Share
Copied to clipboard
2x^{2}-xy+y^{2}=51,2P
Multiply 16 and 3,2 to get 51,2.
51,2P=2x^{2}-xy+y^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{51,2P}{51,2}=\frac{2x^{2}-xy+y^{2}}{51,2}
Divide both sides of the equation by 51,2, which is the same as multiplying both sides by the reciprocal of the fraction.
P=\frac{2x^{2}-xy+y^{2}}{51,2}
Dividing by 51,2 undoes the multiplication by 51,2.
P=-\frac{5xy}{256}+\frac{5x^{2}}{128}+\frac{5y^{2}}{256}
Divide 2x^{2}-xy+y^{2} by 51,2 by multiplying 2x^{2}-xy+y^{2} by the reciprocal of 51,2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}