Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{2x-q+5}{2x+1}\text{, }&x\neq -\frac{1}{2}\\p\in \mathrm{C}\text{, }&q=4\text{ and }x=-\frac{1}{2}\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{2x-q+5}{2x+1}\text{, }&x\neq -\frac{1}{2}\\p\in \mathrm{R}\text{, }&q=4\text{ and }x=-\frac{1}{2}\end{matrix}\right.
Solve for q
q=2px+2x+p+5
Graph
Share
Copied to clipboard
2x^{2}-x+q-5=2x^{2}+2xp+x+p
Use the distributive property to multiply 2x+1 by x+p.
2x^{2}+2xp+x+p=2x^{2}-x+q-5
Swap sides so that all variable terms are on the left hand side.
2xp+x+p=2x^{2}-x+q-5-2x^{2}
Subtract 2x^{2} from both sides.
2xp+x+p=-x+q-5
Combine 2x^{2} and -2x^{2} to get 0.
2xp+p=-x+q-5-x
Subtract x from both sides.
2xp+p=-2x+q-5
Combine -x and -x to get -2x.
\left(2x+1\right)p=-2x+q-5
Combine all terms containing p.
\frac{\left(2x+1\right)p}{2x+1}=\frac{-2x+q-5}{2x+1}
Divide both sides by 2x+1.
p=\frac{-2x+q-5}{2x+1}
Dividing by 2x+1 undoes the multiplication by 2x+1.
2x^{2}-x+q-5=2x^{2}+2xp+x+p
Use the distributive property to multiply 2x+1 by x+p.
2x^{2}+2xp+x+p=2x^{2}-x+q-5
Swap sides so that all variable terms are on the left hand side.
2xp+x+p=2x^{2}-x+q-5-2x^{2}
Subtract 2x^{2} from both sides.
2xp+x+p=-x+q-5
Combine 2x^{2} and -2x^{2} to get 0.
2xp+p=-x+q-5-x
Subtract x from both sides.
2xp+p=-2x+q-5
Combine -x and -x to get -2x.
\left(2x+1\right)p=-2x+q-5
Combine all terms containing p.
\frac{\left(2x+1\right)p}{2x+1}=\frac{-2x+q-5}{2x+1}
Divide both sides by 2x+1.
p=\frac{-2x+q-5}{2x+1}
Dividing by 2x+1 undoes the multiplication by 2x+1.
2x^{2}-x+q-5=2x^{2}+2xp+x+p
Use the distributive property to multiply 2x+1 by x+p.
-x+q-5=2x^{2}+2xp+x+p-2x^{2}
Subtract 2x^{2} from both sides.
-x+q-5=2xp+x+p
Combine 2x^{2} and -2x^{2} to get 0.
q-5=2xp+x+p+x
Add x to both sides.
q-5=2xp+2x+p
Combine x and x to get 2x.
q=2xp+2x+p+5
Add 5 to both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}