Solve for x
x=\sqrt{407}+20\approx 40.174241002
x=20-\sqrt{407}\approx -0.174241002
Graph
Share
Copied to clipboard
2x^{2}-80x=14
Multiply 8 and 10 to get 80.
2x^{2}-80x-14=0
Subtract 14 from both sides.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 2\left(-14\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -80 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 2\left(-14\right)}}{2\times 2}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-8\left(-14\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-80\right)±\sqrt{6400+112}}{2\times 2}
Multiply -8 times -14.
x=\frac{-\left(-80\right)±\sqrt{6512}}{2\times 2}
Add 6400 to 112.
x=\frac{-\left(-80\right)±4\sqrt{407}}{2\times 2}
Take the square root of 6512.
x=\frac{80±4\sqrt{407}}{2\times 2}
The opposite of -80 is 80.
x=\frac{80±4\sqrt{407}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{407}+80}{4}
Now solve the equation x=\frac{80±4\sqrt{407}}{4} when ± is plus. Add 80 to 4\sqrt{407}.
x=\sqrt{407}+20
Divide 80+4\sqrt{407} by 4.
x=\frac{80-4\sqrt{407}}{4}
Now solve the equation x=\frac{80±4\sqrt{407}}{4} when ± is minus. Subtract 4\sqrt{407} from 80.
x=20-\sqrt{407}
Divide 80-4\sqrt{407} by 4.
x=\sqrt{407}+20 x=20-\sqrt{407}
The equation is now solved.
2x^{2}-80x=14
Multiply 8 and 10 to get 80.
\frac{2x^{2}-80x}{2}=\frac{14}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{80}{2}\right)x=\frac{14}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-40x=\frac{14}{2}
Divide -80 by 2.
x^{2}-40x=7
Divide 14 by 2.
x^{2}-40x+\left(-20\right)^{2}=7+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=7+400
Square -20.
x^{2}-40x+400=407
Add 7 to 400.
\left(x-20\right)^{2}=407
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{407}
Take the square root of both sides of the equation.
x-20=\sqrt{407} x-20=-\sqrt{407}
Simplify.
x=\sqrt{407}+20 x=20-\sqrt{407}
Add 20 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}