Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-8x+3=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 3}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -8 for b, and 3 for c in the quadratic formula.
x=\frac{8±2\sqrt{10}}{4}
Do the calculations.
x=\frac{\sqrt{10}}{2}+2 x=-\frac{\sqrt{10}}{2}+2
Solve the equation x=\frac{8±2\sqrt{10}}{4} when ± is plus and when ± is minus.
2\left(x-\left(\frac{\sqrt{10}}{2}+2\right)\right)\left(x-\left(-\frac{\sqrt{10}}{2}+2\right)\right)\geq 0
Rewrite the inequality by using the obtained solutions.
x-\left(\frac{\sqrt{10}}{2}+2\right)\leq 0 x-\left(-\frac{\sqrt{10}}{2}+2\right)\leq 0
For the product to be ≥0, x-\left(\frac{\sqrt{10}}{2}+2\right) and x-\left(-\frac{\sqrt{10}}{2}+2\right) have to be both ≤0 or both ≥0. Consider the case when x-\left(\frac{\sqrt{10}}{2}+2\right) and x-\left(-\frac{\sqrt{10}}{2}+2\right) are both ≤0.
x\leq -\frac{\sqrt{10}}{2}+2
The solution satisfying both inequalities is x\leq -\frac{\sqrt{10}}{2}+2.
x-\left(-\frac{\sqrt{10}}{2}+2\right)\geq 0 x-\left(\frac{\sqrt{10}}{2}+2\right)\geq 0
Consider the case when x-\left(\frac{\sqrt{10}}{2}+2\right) and x-\left(-\frac{\sqrt{10}}{2}+2\right) are both ≥0.
x\geq \frac{\sqrt{10}}{2}+2
The solution satisfying both inequalities is x\geq \frac{\sqrt{10}}{2}+2.
x\leq -\frac{\sqrt{10}}{2}+2\text{; }x\geq \frac{\sqrt{10}}{2}+2
The final solution is the union of the obtained solutions.