Solve for x
x=\frac{\sqrt{273}}{14}+\frac{1}{2}\approx 1.680193689
x=-\frac{\sqrt{273}}{14}+\frac{1}{2}\approx -0.680193689
Graph
Share
Copied to clipboard
2x^{2}-8+7x=\left(-3\right)^{2}x^{2}-4^{2}
Expand \left(-3x\right)^{2}.
2x^{2}-8+7x=9x^{2}-4^{2}
Calculate -3 to the power of 2 and get 9.
2x^{2}-8+7x=9x^{2}-16
Calculate 4 to the power of 2 and get 16.
2x^{2}-8+7x-9x^{2}=-16
Subtract 9x^{2} from both sides.
-7x^{2}-8+7x=-16
Combine 2x^{2} and -9x^{2} to get -7x^{2}.
-7x^{2}-8+7x+16=0
Add 16 to both sides.
-7x^{2}+8+7x=0
Add -8 and 16 to get 8.
-7x^{2}+7x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-7\right)\times 8}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 7 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-7\right)\times 8}}{2\left(-7\right)}
Square 7.
x=\frac{-7±\sqrt{49+28\times 8}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-7±\sqrt{49+224}}{2\left(-7\right)}
Multiply 28 times 8.
x=\frac{-7±\sqrt{273}}{2\left(-7\right)}
Add 49 to 224.
x=\frac{-7±\sqrt{273}}{-14}
Multiply 2 times -7.
x=\frac{\sqrt{273}-7}{-14}
Now solve the equation x=\frac{-7±\sqrt{273}}{-14} when ± is plus. Add -7 to \sqrt{273}.
x=-\frac{\sqrt{273}}{14}+\frac{1}{2}
Divide -7+\sqrt{273} by -14.
x=\frac{-\sqrt{273}-7}{-14}
Now solve the equation x=\frac{-7±\sqrt{273}}{-14} when ± is minus. Subtract \sqrt{273} from -7.
x=\frac{\sqrt{273}}{14}+\frac{1}{2}
Divide -7-\sqrt{273} by -14.
x=-\frac{\sqrt{273}}{14}+\frac{1}{2} x=\frac{\sqrt{273}}{14}+\frac{1}{2}
The equation is now solved.
2x^{2}-8+7x=\left(-3\right)^{2}x^{2}-4^{2}
Expand \left(-3x\right)^{2}.
2x^{2}-8+7x=9x^{2}-4^{2}
Calculate -3 to the power of 2 and get 9.
2x^{2}-8+7x=9x^{2}-16
Calculate 4 to the power of 2 and get 16.
2x^{2}-8+7x-9x^{2}=-16
Subtract 9x^{2} from both sides.
-7x^{2}-8+7x=-16
Combine 2x^{2} and -9x^{2} to get -7x^{2}.
-7x^{2}+7x=-16+8
Add 8 to both sides.
-7x^{2}+7x=-8
Add -16 and 8 to get -8.
\frac{-7x^{2}+7x}{-7}=-\frac{8}{-7}
Divide both sides by -7.
x^{2}+\frac{7}{-7}x=-\frac{8}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-x=-\frac{8}{-7}
Divide 7 by -7.
x^{2}-x=\frac{8}{7}
Divide -8 by -7.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{8}{7}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{8}{7}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{39}{28}
Add \frac{8}{7} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{39}{28}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{39}{28}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{273}}{14} x-\frac{1}{2}=-\frac{\sqrt{273}}{14}
Simplify.
x=\frac{\sqrt{273}}{14}+\frac{1}{2} x=-\frac{\sqrt{273}}{14}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}