Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x^{2}-5x+3-x+6
Combine 2x^{2} and -8x^{2} to get -6x^{2}.
-6x^{2}-6x+3+6
Combine -5x and -x to get -6x.
-6x^{2}-6x+9
Add 3 and 6 to get 9.
factor(-6x^{2}-5x+3-x+6)
Combine 2x^{2} and -8x^{2} to get -6x^{2}.
factor(-6x^{2}-6x+3+6)
Combine -5x and -x to get -6x.
factor(-6x^{2}-6x+9)
Add 3 and 6 to get 9.
-6x^{2}-6x+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-6\right)\times 9}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-6\right)\times 9}}{2\left(-6\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+24\times 9}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-6\right)±\sqrt{36+216}}{2\left(-6\right)}
Multiply 24 times 9.
x=\frac{-\left(-6\right)±\sqrt{252}}{2\left(-6\right)}
Add 36 to 216.
x=\frac{-\left(-6\right)±6\sqrt{7}}{2\left(-6\right)}
Take the square root of 252.
x=\frac{6±6\sqrt{7}}{2\left(-6\right)}
The opposite of -6 is 6.
x=\frac{6±6\sqrt{7}}{-12}
Multiply 2 times -6.
x=\frac{6\sqrt{7}+6}{-12}
Now solve the equation x=\frac{6±6\sqrt{7}}{-12} when ± is plus. Add 6 to 6\sqrt{7}.
x=\frac{-\sqrt{7}-1}{2}
Divide 6+6\sqrt{7} by -12.
x=\frac{6-6\sqrt{7}}{-12}
Now solve the equation x=\frac{6±6\sqrt{7}}{-12} when ± is minus. Subtract 6\sqrt{7} from 6.
x=\frac{\sqrt{7}-1}{2}
Divide 6-6\sqrt{7} by -12.
-6x^{2}-6x+9=-6\left(x-\frac{-\sqrt{7}-1}{2}\right)\left(x-\frac{\sqrt{7}-1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{7}}{2} for x_{1} and \frac{-1+\sqrt{7}}{2} for x_{2}.