Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-5x-\frac{3\times 3}{x-3}
Express 3\times \frac{3}{x-3} as a single fraction.
2x^{2}-5x-\frac{9}{x-3}
Multiply 3 and 3 to get 9.
\frac{\left(2x^{2}-5x\right)\left(x-3\right)}{x-3}-\frac{9}{x-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x^{2}-5x times \frac{x-3}{x-3}.
\frac{\left(2x^{2}-5x\right)\left(x-3\right)-9}{x-3}
Since \frac{\left(2x^{2}-5x\right)\left(x-3\right)}{x-3} and \frac{9}{x-3} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}-6x^{2}-5x^{2}+15x-9}{x-3}
Do the multiplications in \left(2x^{2}-5x\right)\left(x-3\right)-9.
\frac{2x^{3}-11x^{2}+15x-9}{x-3}
Combine like terms in 2x^{3}-6x^{2}-5x^{2}+15x-9.