2 x ^ { 2 } - 5 x - 1 = x ( 4 x
Solve for x
x=\frac{\sqrt{17}-5}{4}\approx -0.219223594
x=\frac{-\sqrt{17}-5}{4}\approx -2.280776406
Graph
Share
Copied to clipboard
2x^{2}-5x-1=x^{2}\times 4
Multiply x and x to get x^{2}.
2x^{2}-5x-1-x^{2}\times 4=0
Subtract x^{2}\times 4 from both sides.
-2x^{2}-5x-1=0
Combine 2x^{2} and -x^{2}\times 4 to get -2x^{2}.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -5 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+8\left(-1\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-5\right)±\sqrt{25-8}}{2\left(-2\right)}
Multiply 8 times -1.
x=\frac{-\left(-5\right)±\sqrt{17}}{2\left(-2\right)}
Add 25 to -8.
x=\frac{5±\sqrt{17}}{2\left(-2\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{17}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{17}+5}{-4}
Now solve the equation x=\frac{5±\sqrt{17}}{-4} when ± is plus. Add 5 to \sqrt{17}.
x=\frac{-\sqrt{17}-5}{4}
Divide 5+\sqrt{17} by -4.
x=\frac{5-\sqrt{17}}{-4}
Now solve the equation x=\frac{5±\sqrt{17}}{-4} when ± is minus. Subtract \sqrt{17} from 5.
x=\frac{\sqrt{17}-5}{4}
Divide 5-\sqrt{17} by -4.
x=\frac{-\sqrt{17}-5}{4} x=\frac{\sqrt{17}-5}{4}
The equation is now solved.
2x^{2}-5x-1=x^{2}\times 4
Multiply x and x to get x^{2}.
2x^{2}-5x-1-x^{2}\times 4=0
Subtract x^{2}\times 4 from both sides.
-2x^{2}-5x-1=0
Combine 2x^{2} and -x^{2}\times 4 to get -2x^{2}.
-2x^{2}-5x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{-2x^{2}-5x}{-2}=\frac{1}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{5}{-2}\right)x=\frac{1}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{5}{2}x=\frac{1}{-2}
Divide -5 by -2.
x^{2}+\frac{5}{2}x=-\frac{1}{2}
Divide 1 by -2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=-\frac{1}{2}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{1}{2}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{17}{16}
Add -\frac{1}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{4}\right)^{2}=\frac{17}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{\sqrt{17}}{4} x+\frac{5}{4}=-\frac{\sqrt{17}}{4}
Simplify.
x=\frac{\sqrt{17}-5}{4} x=\frac{-\sqrt{17}-5}{4}
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}