Solve for x
x=3
Graph
Share
Copied to clipboard
2x\sqrt{x^{2}-5x+6}=3-\left(2x^{2}-5x\right)
Subtract 2x^{2}-5x from both sides of the equation.
2x\sqrt{x^{2}-5x+6}=3-2x^{2}+5x
To find the opposite of 2x^{2}-5x, find the opposite of each term.
\left(2x\sqrt{x^{2}-5x+6}\right)^{2}=\left(3-2x^{2}+5x\right)^{2}
Square both sides of the equation.
2^{2}x^{2}\left(\sqrt{x^{2}-5x+6}\right)^{2}=\left(3-2x^{2}+5x\right)^{2}
Expand \left(2x\sqrt{x^{2}-5x+6}\right)^{2}.
4x^{2}\left(\sqrt{x^{2}-5x+6}\right)^{2}=\left(3-2x^{2}+5x\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}\left(x^{2}-5x+6\right)=\left(3-2x^{2}+5x\right)^{2}
Calculate \sqrt{x^{2}-5x+6} to the power of 2 and get x^{2}-5x+6.
4x^{4}-20x^{3}+24x^{2}=\left(3-2x^{2}+5x\right)^{2}
Use the distributive property to multiply 4x^{2} by x^{2}-5x+6.
4x^{4}-20x^{3}+24x^{2}=4x^{4}-20x^{3}+13x^{2}+30x+9
Square 3-2x^{2}+5x.
4x^{4}-20x^{3}+24x^{2}-4x^{4}=-20x^{3}+13x^{2}+30x+9
Subtract 4x^{4} from both sides.
-20x^{3}+24x^{2}=-20x^{3}+13x^{2}+30x+9
Combine 4x^{4} and -4x^{4} to get 0.
-20x^{3}+24x^{2}+20x^{3}=13x^{2}+30x+9
Add 20x^{3} to both sides.
24x^{2}=13x^{2}+30x+9
Combine -20x^{3} and 20x^{3} to get 0.
24x^{2}-13x^{2}=30x+9
Subtract 13x^{2} from both sides.
11x^{2}=30x+9
Combine 24x^{2} and -13x^{2} to get 11x^{2}.
11x^{2}-30x=9
Subtract 30x from both sides.
11x^{2}-30x-9=0
Subtract 9 from both sides.
a+b=-30 ab=11\left(-9\right)=-99
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 11x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
1,-99 3,-33 9,-11
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -99.
1-99=-98 3-33=-30 9-11=-2
Calculate the sum for each pair.
a=-33 b=3
The solution is the pair that gives sum -30.
\left(11x^{2}-33x\right)+\left(3x-9\right)
Rewrite 11x^{2}-30x-9 as \left(11x^{2}-33x\right)+\left(3x-9\right).
11x\left(x-3\right)+3\left(x-3\right)
Factor out 11x in the first and 3 in the second group.
\left(x-3\right)\left(11x+3\right)
Factor out common term x-3 by using distributive property.
x=3 x=-\frac{3}{11}
To find equation solutions, solve x-3=0 and 11x+3=0.
2\times 3^{2}-5\times 3+2\times 3\sqrt{3^{2}-5\times 3+6}=3
Substitute 3 for x in the equation 2x^{2}-5x+2x\sqrt{x^{2}-5x+6}=3.
3=3
Simplify. The value x=3 satisfies the equation.
2\left(-\frac{3}{11}\right)^{2}-5\left(-\frac{3}{11}\right)+2\left(-\frac{3}{11}\right)\sqrt{\left(-\frac{3}{11}\right)^{2}-5\left(-\frac{3}{11}\right)+6}=3
Substitute -\frac{3}{11} for x in the equation 2x^{2}-5x+2x\sqrt{x^{2}-5x+6}=3.
\frac{3}{121}=3
Simplify. The value x=-\frac{3}{11} does not satisfy the equation.
x=3
Equation 2x\sqrt{x^{2}-5x+6}=3+5x-2x^{2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}