Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-5-15x=0
Subtract 15x from both sides.
2x^{2}-15x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -15 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 2\left(-5\right)}}{2\times 2}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-8\left(-5\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-15\right)±\sqrt{225+40}}{2\times 2}
Multiply -8 times -5.
x=\frac{-\left(-15\right)±\sqrt{265}}{2\times 2}
Add 225 to 40.
x=\frac{15±\sqrt{265}}{2\times 2}
The opposite of -15 is 15.
x=\frac{15±\sqrt{265}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{265}+15}{4}
Now solve the equation x=\frac{15±\sqrt{265}}{4} when ± is plus. Add 15 to \sqrt{265}.
x=\frac{15-\sqrt{265}}{4}
Now solve the equation x=\frac{15±\sqrt{265}}{4} when ± is minus. Subtract \sqrt{265} from 15.
x=\frac{\sqrt{265}+15}{4} x=\frac{15-\sqrt{265}}{4}
The equation is now solved.
2x^{2}-5-15x=0
Subtract 15x from both sides.
2x^{2}-15x=5
Add 5 to both sides. Anything plus zero gives itself.
\frac{2x^{2}-15x}{2}=\frac{5}{2}
Divide both sides by 2.
x^{2}-\frac{15}{2}x=\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{15}{2}x+\left(-\frac{15}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{15}{4}\right)^{2}
Divide -\frac{15}{2}, the coefficient of the x term, by 2 to get -\frac{15}{4}. Then add the square of -\frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{2}x+\frac{225}{16}=\frac{5}{2}+\frac{225}{16}
Square -\frac{15}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{2}x+\frac{225}{16}=\frac{265}{16}
Add \frac{5}{2} to \frac{225}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{4}\right)^{2}=\frac{265}{16}
Factor x^{2}-\frac{15}{2}x+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{4}\right)^{2}}=\sqrt{\frac{265}{16}}
Take the square root of both sides of the equation.
x-\frac{15}{4}=\frac{\sqrt{265}}{4} x-\frac{15}{4}=-\frac{\sqrt{265}}{4}
Simplify.
x=\frac{\sqrt{265}+15}{4} x=\frac{15-\sqrt{265}}{4}
Add \frac{15}{4} to both sides of the equation.