Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-4x-5=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}-4x-5-7=7-7
Subtract 7 from both sides of the equation.
2x^{2}-4x-5-7=0
Subtracting 7 from itself leaves 0.
2x^{2}-4x-12=0
Subtract 7 from -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-12\right)}}{2\times 2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-12\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{16+96}}{2\times 2}
Multiply -8 times -12.
x=\frac{-\left(-4\right)±\sqrt{112}}{2\times 2}
Add 16 to 96.
x=\frac{-\left(-4\right)±4\sqrt{7}}{2\times 2}
Take the square root of 112.
x=\frac{4±4\sqrt{7}}{2\times 2}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{7}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{7}+4}{4}
Now solve the equation x=\frac{4±4\sqrt{7}}{4} when ± is plus. Add 4 to 4\sqrt{7}.
x=\sqrt{7}+1
Divide 4+4\sqrt{7} by 4.
x=\frac{4-4\sqrt{7}}{4}
Now solve the equation x=\frac{4±4\sqrt{7}}{4} when ± is minus. Subtract 4\sqrt{7} from 4.
x=1-\sqrt{7}
Divide 4-4\sqrt{7} by 4.
x=\sqrt{7}+1 x=1-\sqrt{7}
The equation is now solved.
2x^{2}-4x-5=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-4x-5-\left(-5\right)=7-\left(-5\right)
Add 5 to both sides of the equation.
2x^{2}-4x=7-\left(-5\right)
Subtracting -5 from itself leaves 0.
2x^{2}-4x=12
Subtract -5 from 7.
\frac{2x^{2}-4x}{2}=\frac{12}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-2x=\frac{12}{2}
Divide -4 by 2.
x^{2}-2x=6
Divide 12 by 2.
x^{2}-2x+1=6+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=7
Add 6 to 1.
\left(x-1\right)^{2}=7
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x-1=\sqrt{7} x-1=-\sqrt{7}
Simplify.
x=\sqrt{7}+1 x=1-\sqrt{7}
Add 1 to both sides of the equation.