Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-4-x^{2}=\frac{5}{3}
Subtract x^{2} from both sides.
x^{2}-4=\frac{5}{3}
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}=\frac{5}{3}+4
Add 4 to both sides.
x^{2}=\frac{17}{3}
Add \frac{5}{3} and 4 to get \frac{17}{3}.
x=\frac{\sqrt{51}}{3} x=-\frac{\sqrt{51}}{3}
Take the square root of both sides of the equation.
2x^{2}-4-\frac{5}{3}=x^{2}
Subtract \frac{5}{3} from both sides.
2x^{2}-\frac{17}{3}=x^{2}
Subtract \frac{5}{3} from -4 to get -\frac{17}{3}.
2x^{2}-\frac{17}{3}-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-\frac{17}{3}=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{17}{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{17}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{17}{3}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{68}{3}}}{2}
Multiply -4 times -\frac{17}{3}.
x=\frac{0±\frac{2\sqrt{51}}{3}}{2}
Take the square root of \frac{68}{3}.
x=\frac{\sqrt{51}}{3}
Now solve the equation x=\frac{0±\frac{2\sqrt{51}}{3}}{2} when ± is plus.
x=-\frac{\sqrt{51}}{3}
Now solve the equation x=\frac{0±\frac{2\sqrt{51}}{3}}{2} when ± is minus.
x=\frac{\sqrt{51}}{3} x=-\frac{\sqrt{51}}{3}
The equation is now solved.