Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=4
Graph
Share
Copied to clipboard
2x^{2}-3x-15-5=0
Subtract 5 from both sides.
2x^{2}-3x-20=0
Subtract 5 from -15 to get -20.
a+b=-3 ab=2\left(-20\right)=-40
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
1,-40 2,-20 4,-10 5,-8
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Calculate the sum for each pair.
a=-8 b=5
The solution is the pair that gives sum -3.
\left(2x^{2}-8x\right)+\left(5x-20\right)
Rewrite 2x^{2}-3x-20 as \left(2x^{2}-8x\right)+\left(5x-20\right).
2x\left(x-4\right)+5\left(x-4\right)
Factor out 2x in the first and 5 in the second group.
\left(x-4\right)\left(2x+5\right)
Factor out common term x-4 by using distributive property.
x=4 x=-\frac{5}{2}
To find equation solutions, solve x-4=0 and 2x+5=0.
2x^{2}-3x-15=5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}-3x-15-5=5-5
Subtract 5 from both sides of the equation.
2x^{2}-3x-15-5=0
Subtracting 5 from itself leaves 0.
2x^{2}-3x-20=0
Subtract 5 from -15.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-20\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-20\right)}}{2\times 2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-20\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-3\right)±\sqrt{9+160}}{2\times 2}
Multiply -8 times -20.
x=\frac{-\left(-3\right)±\sqrt{169}}{2\times 2}
Add 9 to 160.
x=\frac{-\left(-3\right)±13}{2\times 2}
Take the square root of 169.
x=\frac{3±13}{2\times 2}
The opposite of -3 is 3.
x=\frac{3±13}{4}
Multiply 2 times 2.
x=\frac{16}{4}
Now solve the equation x=\frac{3±13}{4} when ± is plus. Add 3 to 13.
x=4
Divide 16 by 4.
x=-\frac{10}{4}
Now solve the equation x=\frac{3±13}{4} when ± is minus. Subtract 13 from 3.
x=-\frac{5}{2}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x=4 x=-\frac{5}{2}
The equation is now solved.
2x^{2}-3x-15=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-3x-15-\left(-15\right)=5-\left(-15\right)
Add 15 to both sides of the equation.
2x^{2}-3x=5-\left(-15\right)
Subtracting -15 from itself leaves 0.
2x^{2}-3x=20
Subtract -15 from 5.
\frac{2x^{2}-3x}{2}=\frac{20}{2}
Divide both sides by 2.
x^{2}-\frac{3}{2}x=\frac{20}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{3}{2}x=10
Divide 20 by 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=10+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=10+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{169}{16}
Add 10 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{169}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{13}{4} x-\frac{3}{4}=-\frac{13}{4}
Simplify.
x=4 x=-\frac{5}{2}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}