Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(5x^{2}-27-14x)
Combine 2x^{2} and 3x^{2} to get 5x^{2}.
5x^{2}-14x-27=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 5\left(-27\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 5\left(-27\right)}}{2\times 5}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-20\left(-27\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-14\right)±\sqrt{196+540}}{2\times 5}
Multiply -20 times -27.
x=\frac{-\left(-14\right)±\sqrt{736}}{2\times 5}
Add 196 to 540.
x=\frac{-\left(-14\right)±4\sqrt{46}}{2\times 5}
Take the square root of 736.
x=\frac{14±4\sqrt{46}}{2\times 5}
The opposite of -14 is 14.
x=\frac{14±4\sqrt{46}}{10}
Multiply 2 times 5.
x=\frac{4\sqrt{46}+14}{10}
Now solve the equation x=\frac{14±4\sqrt{46}}{10} when ± is plus. Add 14 to 4\sqrt{46}.
x=\frac{2\sqrt{46}+7}{5}
Divide 14+4\sqrt{46} by 10.
x=\frac{14-4\sqrt{46}}{10}
Now solve the equation x=\frac{14±4\sqrt{46}}{10} when ± is minus. Subtract 4\sqrt{46} from 14.
x=\frac{7-2\sqrt{46}}{5}
Divide 14-4\sqrt{46} by 10.
5x^{2}-14x-27=5\left(x-\frac{2\sqrt{46}+7}{5}\right)\left(x-\frac{7-2\sqrt{46}}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7+2\sqrt{46}}{5} for x_{1} and \frac{7-2\sqrt{46}}{5} for x_{2}.
5x^{2}-27-14x
Combine 2x^{2} and 3x^{2} to get 5x^{2}.