Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+\left(-2\sqrt{3}\right)x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\sqrt{3}\right)±\sqrt{\left(-2\sqrt{3}\right)^{2}-4\times 2\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2\sqrt{3} for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\sqrt{3}\right)±\sqrt{12-4\times 2\times 2}}{2\times 2}
Square -2\sqrt{3}.
x=\frac{-\left(-2\sqrt{3}\right)±\sqrt{12-8\times 2}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-2\sqrt{3}\right)±\sqrt{12-16}}{2\times 2}
Multiply -8 times 2.
x=\frac{-\left(-2\sqrt{3}\right)±\sqrt{-4}}{2\times 2}
Add 12 to -16.
x=\frac{-\left(-2\sqrt{3}\right)±2i}{2\times 2}
Take the square root of -4.
x=\frac{2\sqrt{3}±2i}{2\times 2}
The opposite of -2\sqrt{3} is 2\sqrt{3}.
x=\frac{2\sqrt{3}±2i}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{3}+2i}{4}
Now solve the equation x=\frac{2\sqrt{3}±2i}{4} when ± is plus. Add 2\sqrt{3} to 2i.
x=\frac{\sqrt{3}}{2}+\frac{1}{2}i
Divide 2\sqrt{3}+2i by 4.
x=\frac{2\sqrt{3}-2i}{4}
Now solve the equation x=\frac{2\sqrt{3}±2i}{4} when ± is minus. Subtract 2i from 2\sqrt{3}.
x=\frac{\sqrt{3}}{2}-\frac{1}{2}i
Divide 2\sqrt{3}-2i by 4.
x=\frac{\sqrt{3}}{2}+\frac{1}{2}i x=\frac{\sqrt{3}}{2}-\frac{1}{2}i
The equation is now solved.
2x^{2}+\left(-2\sqrt{3}\right)x+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+\left(-2\sqrt{3}\right)x+2-2=-2
Subtract 2 from both sides of the equation.
2x^{2}+\left(-2\sqrt{3}\right)x=-2
Subtracting 2 from itself leaves 0.
\frac{2x^{2}+\left(-2\sqrt{3}\right)x}{2}=-\frac{2}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{2\sqrt{3}}{2}\right)x=-\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\left(-\sqrt{3}\right)x=-\frac{2}{2}
Divide -2\sqrt{3} by 2.
x^{2}+\left(-\sqrt{3}\right)x=-1
Divide -2 by 2.
x^{2}+\left(-\sqrt{3}\right)x+\left(-\frac{\sqrt{3}}{2}\right)^{2}=-1+\left(-\frac{\sqrt{3}}{2}\right)^{2}
Divide -\sqrt{3}, the coefficient of the x term, by 2 to get -\frac{\sqrt{3}}{2}. Then add the square of -\frac{\sqrt{3}}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-\sqrt{3}\right)x+\frac{3}{4}=-1+\frac{3}{4}
Square -\frac{\sqrt{3}}{2}.
x^{2}+\left(-\sqrt{3}\right)x+\frac{3}{4}=-\frac{1}{4}
Add -1 to \frac{3}{4}.
\left(x-\frac{\sqrt{3}}{2}\right)^{2}=-\frac{1}{4}
Factor x^{2}+\left(-\sqrt{3}\right)x+\frac{3}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{\sqrt{3}}{2}=\frac{1}{2}i x-\frac{\sqrt{3}}{2}=-\frac{1}{2}i
Simplify.
x=\frac{\sqrt{3}}{2}+\frac{1}{2}i x=\frac{\sqrt{3}}{2}-\frac{1}{2}i
Add \frac{\sqrt{3}}{2} to both sides of the equation.