Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-12x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 5}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -12 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 5}}{2\times 2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 5}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-12\right)±\sqrt{144-40}}{2\times 2}
Multiply -8 times 5.
x=\frac{-\left(-12\right)±\sqrt{104}}{2\times 2}
Add 144 to -40.
x=\frac{-\left(-12\right)±2\sqrt{26}}{2\times 2}
Take the square root of 104.
x=\frac{12±2\sqrt{26}}{2\times 2}
The opposite of -12 is 12.
x=\frac{12±2\sqrt{26}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{26}+12}{4}
Now solve the equation x=\frac{12±2\sqrt{26}}{4} when ± is plus. Add 12 to 2\sqrt{26}.
x=\frac{\sqrt{26}}{2}+3
Divide 12+2\sqrt{26} by 4.
x=\frac{12-2\sqrt{26}}{4}
Now solve the equation x=\frac{12±2\sqrt{26}}{4} when ± is minus. Subtract 2\sqrt{26} from 12.
x=-\frac{\sqrt{26}}{2}+3
Divide 12-2\sqrt{26} by 4.
x=\frac{\sqrt{26}}{2}+3 x=-\frac{\sqrt{26}}{2}+3
The equation is now solved.
2x^{2}-12x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-12x+5-5=-5
Subtract 5 from both sides of the equation.
2x^{2}-12x=-5
Subtracting 5 from itself leaves 0.
\frac{2x^{2}-12x}{2}=-\frac{5}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{12}{2}\right)x=-\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-6x=-\frac{5}{2}
Divide -12 by 2.
x^{2}-6x+\left(-3\right)^{2}=-\frac{5}{2}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{5}{2}+9
Square -3.
x^{2}-6x+9=\frac{13}{2}
Add -\frac{5}{2} to 9.
\left(x-3\right)^{2}=\frac{13}{2}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{13}{2}}
Take the square root of both sides of the equation.
x-3=\frac{\sqrt{26}}{2} x-3=-\frac{\sqrt{26}}{2}
Simplify.
x=\frac{\sqrt{26}}{2}+3 x=-\frac{\sqrt{26}}{2}+3
Add 3 to both sides of the equation.
x ^ 2 -6x +\frac{5}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = 6 rs = \frac{5}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 3 - u s = 3 + u
Two numbers r and s sum up to 6 exactly when the average of the two numbers is \frac{1}{2}*6 = 3. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(3 - u) (3 + u) = \frac{5}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{5}{2}
9 - u^2 = \frac{5}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{5}{2}-9 = -\frac{13}{2}
Simplify the expression by subtracting 9 on both sides
u^2 = \frac{13}{2} u = \pm\sqrt{\frac{13}{2}} = \pm \frac{\sqrt{13}}{\sqrt{2}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =3 - \frac{\sqrt{13}}{\sqrt{2}} = 0.450 s = 3 + \frac{\sqrt{13}}{\sqrt{2}} = 5.550
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.