Solve for x
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
240x^{2}+6x\times 30+45=195
Multiply 2 and 120 to get 240.
240x^{2}+180x+45=195
Multiply 6 and 30 to get 180.
240x^{2}+180x+45-195=0
Subtract 195 from both sides.
240x^{2}+180x-150=0
Subtract 195 from 45 to get -150.
8x^{2}+6x-5=0
Divide both sides by 30.
a+b=6 ab=8\left(-5\right)=-40
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 8x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
-1,40 -2,20 -4,10 -5,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -40.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
Calculate the sum for each pair.
a=-4 b=10
The solution is the pair that gives sum 6.
\left(8x^{2}-4x\right)+\left(10x-5\right)
Rewrite 8x^{2}+6x-5 as \left(8x^{2}-4x\right)+\left(10x-5\right).
4x\left(2x-1\right)+5\left(2x-1\right)
Factor out 4x in the first and 5 in the second group.
\left(2x-1\right)\left(4x+5\right)
Factor out common term 2x-1 by using distributive property.
x=\frac{1}{2} x=-\frac{5}{4}
To find equation solutions, solve 2x-1=0 and 4x+5=0.
240x^{2}+6x\times 30+45=195
Multiply 2 and 120 to get 240.
240x^{2}+180x+45=195
Multiply 6 and 30 to get 180.
240x^{2}+180x+45-195=0
Subtract 195 from both sides.
240x^{2}+180x-150=0
Subtract 195 from 45 to get -150.
x=\frac{-180±\sqrt{180^{2}-4\times 240\left(-150\right)}}{2\times 240}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 240 for a, 180 for b, and -150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-180±\sqrt{32400-4\times 240\left(-150\right)}}{2\times 240}
Square 180.
x=\frac{-180±\sqrt{32400-960\left(-150\right)}}{2\times 240}
Multiply -4 times 240.
x=\frac{-180±\sqrt{32400+144000}}{2\times 240}
Multiply -960 times -150.
x=\frac{-180±\sqrt{176400}}{2\times 240}
Add 32400 to 144000.
x=\frac{-180±420}{2\times 240}
Take the square root of 176400.
x=\frac{-180±420}{480}
Multiply 2 times 240.
x=\frac{240}{480}
Now solve the equation x=\frac{-180±420}{480} when ± is plus. Add -180 to 420.
x=\frac{1}{2}
Reduce the fraction \frac{240}{480} to lowest terms by extracting and canceling out 240.
x=-\frac{600}{480}
Now solve the equation x=\frac{-180±420}{480} when ± is minus. Subtract 420 from -180.
x=-\frac{5}{4}
Reduce the fraction \frac{-600}{480} to lowest terms by extracting and canceling out 120.
x=\frac{1}{2} x=-\frac{5}{4}
The equation is now solved.
240x^{2}+6x\times 30+45=195
Multiply 2 and 120 to get 240.
240x^{2}+180x+45=195
Multiply 6 and 30 to get 180.
240x^{2}+180x=195-45
Subtract 45 from both sides.
240x^{2}+180x=150
Subtract 45 from 195 to get 150.
\frac{240x^{2}+180x}{240}=\frac{150}{240}
Divide both sides by 240.
x^{2}+\frac{180}{240}x=\frac{150}{240}
Dividing by 240 undoes the multiplication by 240.
x^{2}+\frac{3}{4}x=\frac{150}{240}
Reduce the fraction \frac{180}{240} to lowest terms by extracting and canceling out 60.
x^{2}+\frac{3}{4}x=\frac{5}{8}
Reduce the fraction \frac{150}{240} to lowest terms by extracting and canceling out 30.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\frac{5}{8}+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{5}{8}+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{49}{64}
Add \frac{5}{8} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{8}\right)^{2}=\frac{49}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{7}{8} x+\frac{3}{8}=-\frac{7}{8}
Simplify.
x=\frac{1}{2} x=-\frac{5}{4}
Subtract \frac{3}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}