Solve for x
x=\frac{\sqrt{17}-7}{8}\approx -0.359611797
x=\frac{-\sqrt{17}-7}{8}\approx -1.390388203
Graph
Share
Copied to clipboard
2x^{2}+3.5x=-1
Add 3.5x to both sides.
2x^{2}+3.5x+1=0
Add 1 to both sides.
x=\frac{-3.5±\sqrt{3.5^{2}-4\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3.5 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3.5±\sqrt{12.25-4\times 2}}{2\times 2}
Square 3.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-3.5±\sqrt{12.25-8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3.5±\sqrt{4.25}}{2\times 2}
Add 12.25 to -8.
x=\frac{-3.5±\frac{\sqrt{17}}{2}}{2\times 2}
Take the square root of 4.25.
x=\frac{-3.5±\frac{\sqrt{17}}{2}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{17}-7}{2\times 4}
Now solve the equation x=\frac{-3.5±\frac{\sqrt{17}}{2}}{4} when ± is plus. Add -3.5 to \frac{\sqrt{17}}{2}.
x=\frac{\sqrt{17}-7}{8}
Divide \frac{-7+\sqrt{17}}{2} by 4.
x=\frac{-\sqrt{17}-7}{2\times 4}
Now solve the equation x=\frac{-3.5±\frac{\sqrt{17}}{2}}{4} when ± is minus. Subtract \frac{\sqrt{17}}{2} from -3.5.
x=\frac{-\sqrt{17}-7}{8}
Divide \frac{-7-\sqrt{17}}{2} by 4.
x=\frac{\sqrt{17}-7}{8} x=\frac{-\sqrt{17}-7}{8}
The equation is now solved.
2x^{2}+3.5x=-1
Add 3.5x to both sides.
\frac{2x^{2}+3.5x}{2}=-\frac{1}{2}
Divide both sides by 2.
x^{2}+\frac{3.5}{2}x=-\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+1.75x=-\frac{1}{2}
Divide 3.5 by 2.
x^{2}+1.75x+0.875^{2}=-\frac{1}{2}+0.875^{2}
Divide 1.75, the coefficient of the x term, by 2 to get 0.875. Then add the square of 0.875 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+1.75x+0.765625=-\frac{1}{2}+0.765625
Square 0.875 by squaring both the numerator and the denominator of the fraction.
x^{2}+1.75x+0.765625=\frac{17}{64}
Add -\frac{1}{2} to 0.765625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.875\right)^{2}=\frac{17}{64}
Factor x^{2}+1.75x+0.765625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.875\right)^{2}}=\sqrt{\frac{17}{64}}
Take the square root of both sides of the equation.
x+0.875=\frac{\sqrt{17}}{8} x+0.875=-\frac{\sqrt{17}}{8}
Simplify.
x=\frac{\sqrt{17}-7}{8} x=\frac{-\sqrt{17}-7}{8}
Subtract 0.875 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}