Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}=64-16x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
2x^{2}-64=-16x+x^{2}
Subtract 64 from both sides.
2x^{2}-64+16x=x^{2}
Add 16x to both sides.
2x^{2}-64+16x-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-64+16x=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+16x-64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-64\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 16 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-64\right)}}{2}
Square 16.
x=\frac{-16±\sqrt{256+256}}{2}
Multiply -4 times -64.
x=\frac{-16±\sqrt{512}}{2}
Add 256 to 256.
x=\frac{-16±16\sqrt{2}}{2}
Take the square root of 512.
x=\frac{16\sqrt{2}-16}{2}
Now solve the equation x=\frac{-16±16\sqrt{2}}{2} when ± is plus. Add -16 to 16\sqrt{2}.
x=8\sqrt{2}-8
Divide -16+16\sqrt{2} by 2.
x=\frac{-16\sqrt{2}-16}{2}
Now solve the equation x=\frac{-16±16\sqrt{2}}{2} when ± is minus. Subtract 16\sqrt{2} from -16.
x=-8\sqrt{2}-8
Divide -16-16\sqrt{2} by 2.
x=8\sqrt{2}-8 x=-8\sqrt{2}-8
The equation is now solved.
2x^{2}=64-16x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
2x^{2}+16x=64+x^{2}
Add 16x to both sides.
2x^{2}+16x-x^{2}=64
Subtract x^{2} from both sides.
x^{2}+16x=64
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+16x+8^{2}=64+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=64+64
Square 8.
x^{2}+16x+64=128
Add 64 to 64.
\left(x+8\right)^{2}=128
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{128}
Take the square root of both sides of the equation.
x+8=8\sqrt{2} x+8=-8\sqrt{2}
Simplify.
x=8\sqrt{2}-8 x=-8\sqrt{2}-8
Subtract 8 from both sides of the equation.