Solve for x (complex solution)
x=\frac{1}{2}+\sqrt{2}i\approx 0.5+1.414213562i
x=-\sqrt{2}i+\frac{1}{2}\approx 0.5-1.414213562i
Graph
Share
Copied to clipboard
2x^{2}+x+7+x^{2}=5x-2-x^{2}
Add x^{2} to both sides.
3x^{2}+x+7=5x-2-x^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+x+7-5x=-2-x^{2}
Subtract 5x from both sides.
3x^{2}-4x+7=-2-x^{2}
Combine x and -5x to get -4x.
3x^{2}-4x+7-\left(-2\right)=-x^{2}
Subtract -2 from both sides.
3x^{2}-4x+7+2=-x^{2}
The opposite of -2 is 2.
3x^{2}-4x+7+2+x^{2}=0
Add x^{2} to both sides.
3x^{2}-4x+9+x^{2}=0
Add 7 and 2 to get 9.
4x^{2}-4x+9=0
Combine 3x^{2} and x^{2} to get 4x^{2}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\times 9}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -4 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\times 9}}{2\times 4}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\times 9}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-4\right)±\sqrt{16-144}}{2\times 4}
Multiply -16 times 9.
x=\frac{-\left(-4\right)±\sqrt{-128}}{2\times 4}
Add 16 to -144.
x=\frac{-\left(-4\right)±8\sqrt{2}i}{2\times 4}
Take the square root of -128.
x=\frac{4±8\sqrt{2}i}{2\times 4}
The opposite of -4 is 4.
x=\frac{4±8\sqrt{2}i}{8}
Multiply 2 times 4.
x=\frac{4+8\sqrt{2}i}{8}
Now solve the equation x=\frac{4±8\sqrt{2}i}{8} when ± is plus. Add 4 to 8i\sqrt{2}.
x=\frac{1}{2}+\sqrt{2}i
Divide 4+8i\sqrt{2} by 8.
x=\frac{-8\sqrt{2}i+4}{8}
Now solve the equation x=\frac{4±8\sqrt{2}i}{8} when ± is minus. Subtract 8i\sqrt{2} from 4.
x=-\sqrt{2}i+\frac{1}{2}
Divide 4-8i\sqrt{2} by 8.
x=\frac{1}{2}+\sqrt{2}i x=-\sqrt{2}i+\frac{1}{2}
The equation is now solved.
2x^{2}+x+7+x^{2}=5x-2-x^{2}
Add x^{2} to both sides.
3x^{2}+x+7=5x-2-x^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+x+7-5x=-2-x^{2}
Subtract 5x from both sides.
3x^{2}-4x+7=-2-x^{2}
Combine x and -5x to get -4x.
3x^{2}-4x+7+x^{2}=-2
Add x^{2} to both sides.
4x^{2}-4x+7=-2
Combine 3x^{2} and x^{2} to get 4x^{2}.
4x^{2}-4x=-2-7
Subtract 7 from both sides.
4x^{2}-4x=-9
Subtract 7 from -2 to get -9.
\frac{4x^{2}-4x}{4}=-\frac{9}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{4}{4}\right)x=-\frac{9}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-x=-\frac{9}{4}
Divide -4 by 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{-9+1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-2
Add -\frac{9}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=-2
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-2}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\sqrt{2}i x-\frac{1}{2}=-\sqrt{2}i
Simplify.
x=\frac{1}{2}+\sqrt{2}i x=-\sqrt{2}i+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}