Solve for k (complex solution)
\left\{\begin{matrix}\\k=2-2x\text{, }&\text{unconditionally}\\k\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
Solve for k
\left\{\begin{matrix}\\k=2-2x\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
Solve for x
x=-1
x=-\frac{k}{2}+1
Graph
Share
Copied to clipboard
kx+k-2=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
kx+k=-2x^{2}+2
Add 2 to both sides.
\left(x+1\right)k=-2x^{2}+2
Combine all terms containing k.
\left(x+1\right)k=2-2x^{2}
The equation is in standard form.
\frac{\left(x+1\right)k}{x+1}=\frac{2-2x^{2}}{x+1}
Divide both sides by 1+x.
k=\frac{2-2x^{2}}{x+1}
Dividing by 1+x undoes the multiplication by 1+x.
k=2-2x
Divide -2x^{2}+2 by 1+x.
kx+k-2=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
kx+k=-2x^{2}+2
Add 2 to both sides.
\left(x+1\right)k=-2x^{2}+2
Combine all terms containing k.
\left(x+1\right)k=2-2x^{2}
The equation is in standard form.
\frac{\left(x+1\right)k}{x+1}=\frac{2-2x^{2}}{x+1}
Divide both sides by 1+x.
k=\frac{2-2x^{2}}{x+1}
Dividing by 1+x undoes the multiplication by 1+x.
k=2-2x
Divide -2x^{2}+2 by 1+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}