Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+9x+10=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\times 2\times 10}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 9 for b, and 10 for c in the quadratic formula.
x=\frac{-9±1}{4}
Do the calculations.
x=-2 x=-\frac{5}{2}
Solve the equation x=\frac{-9±1}{4} when ± is plus and when ± is minus.
2\left(x+2\right)\left(x+\frac{5}{2}\right)\geq 0
Rewrite the inequality by using the obtained solutions.
x+2\leq 0 x+\frac{5}{2}\leq 0
For the product to be ≥0, x+2 and x+\frac{5}{2} have to be both ≤0 or both ≥0. Consider the case when x+2 and x+\frac{5}{2} are both ≤0.
x\leq -\frac{5}{2}
The solution satisfying both inequalities is x\leq -\frac{5}{2}.
x+\frac{5}{2}\geq 0 x+2\geq 0
Consider the case when x+2 and x+\frac{5}{2} are both ≥0.
x\geq -2
The solution satisfying both inequalities is x\geq -2.
x\leq -\frac{5}{2}\text{; }x\geq -2
The final solution is the union of the obtained solutions.