Solve for x
x=5
x=-5
Graph
Share
Copied to clipboard
2x^{2}+9-59=0
Subtract 59 from both sides.
2x^{2}-50=0
Subtract 59 from 9 to get -50.
x^{2}-25=0
Divide both sides by 2.
\left(x-5\right)\left(x+5\right)=0
Consider x^{2}-25. Rewrite x^{2}-25 as x^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=5 x=-5
To find equation solutions, solve x-5=0 and x+5=0.
2x^{2}=59-9
Subtract 9 from both sides.
2x^{2}=50
Subtract 9 from 59 to get 50.
x^{2}=\frac{50}{2}
Divide both sides by 2.
x^{2}=25
Divide 50 by 2 to get 25.
x=5 x=-5
Take the square root of both sides of the equation.
2x^{2}+9-59=0
Subtract 59 from both sides.
2x^{2}-50=0
Subtract 59 from 9 to get -50.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-50\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-50\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-50\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{400}}{2\times 2}
Multiply -8 times -50.
x=\frac{0±20}{2\times 2}
Take the square root of 400.
x=\frac{0±20}{4}
Multiply 2 times 2.
x=5
Now solve the equation x=\frac{0±20}{4} when ± is plus. Divide 20 by 4.
x=-5
Now solve the equation x=\frac{0±20}{4} when ± is minus. Divide -20 by 4.
x=5 x=-5
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}