Evaluate
6x^{2}+6x-1
Factor
6\left(x-\left(-\frac{\sqrt{15}}{6}-\frac{1}{2}\right)\right)\left(x-\left(\frac{\sqrt{15}}{6}-\frac{1}{2}\right)\right)
Graph
Share
Copied to clipboard
6x^{2}+7x-2-x+1
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}+6x-2+1
Combine 7x and -x to get 6x.
6x^{2}+6x-1
Add -2 and 1 to get -1.
factor(6x^{2}+7x-2-x+1)
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
factor(6x^{2}+6x-2+1)
Combine 7x and -x to get 6x.
factor(6x^{2}+6x-1)
Add -2 and 1 to get -1.
6x^{2}+6x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 6\left(-1\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 6\left(-1\right)}}{2\times 6}
Square 6.
x=\frac{-6±\sqrt{36-24\left(-1\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-6±\sqrt{36+24}}{2\times 6}
Multiply -24 times -1.
x=\frac{-6±\sqrt{60}}{2\times 6}
Add 36 to 24.
x=\frac{-6±2\sqrt{15}}{2\times 6}
Take the square root of 60.
x=\frac{-6±2\sqrt{15}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{15}-6}{12}
Now solve the equation x=\frac{-6±2\sqrt{15}}{12} when ± is plus. Add -6 to 2\sqrt{15}.
x=\frac{\sqrt{15}}{6}-\frac{1}{2}
Divide -6+2\sqrt{15} by 12.
x=\frac{-2\sqrt{15}-6}{12}
Now solve the equation x=\frac{-6±2\sqrt{15}}{12} when ± is minus. Subtract 2\sqrt{15} from -6.
x=-\frac{\sqrt{15}}{6}-\frac{1}{2}
Divide -6-2\sqrt{15} by 12.
6x^{2}+6x-1=6\left(x-\left(\frac{\sqrt{15}}{6}-\frac{1}{2}\right)\right)\left(x-\left(-\frac{\sqrt{15}}{6}-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{2}+\frac{\sqrt{15}}{6} for x_{1} and -\frac{1}{2}-\frac{\sqrt{15}}{6} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}