Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+7x-2-x+1
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}+6x-2+1
Combine 7x and -x to get 6x.
6x^{2}+6x-1
Add -2 and 1 to get -1.
factor(6x^{2}+7x-2-x+1)
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
factor(6x^{2}+6x-2+1)
Combine 7x and -x to get 6x.
factor(6x^{2}+6x-1)
Add -2 and 1 to get -1.
6x^{2}+6x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 6\left(-1\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 6\left(-1\right)}}{2\times 6}
Square 6.
x=\frac{-6±\sqrt{36-24\left(-1\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-6±\sqrt{36+24}}{2\times 6}
Multiply -24 times -1.
x=\frac{-6±\sqrt{60}}{2\times 6}
Add 36 to 24.
x=\frac{-6±2\sqrt{15}}{2\times 6}
Take the square root of 60.
x=\frac{-6±2\sqrt{15}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{15}-6}{12}
Now solve the equation x=\frac{-6±2\sqrt{15}}{12} when ± is plus. Add -6 to 2\sqrt{15}.
x=\frac{\sqrt{15}}{6}-\frac{1}{2}
Divide -6+2\sqrt{15} by 12.
x=\frac{-2\sqrt{15}-6}{12}
Now solve the equation x=\frac{-6±2\sqrt{15}}{12} when ± is minus. Subtract 2\sqrt{15} from -6.
x=-\frac{\sqrt{15}}{6}-\frac{1}{2}
Divide -6-2\sqrt{15} by 12.
6x^{2}+6x-1=6\left(x-\left(\frac{\sqrt{15}}{6}-\frac{1}{2}\right)\right)\left(x-\left(-\frac{\sqrt{15}}{6}-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{2}+\frac{\sqrt{15}}{6} for x_{1} and -\frac{1}{2}-\frac{\sqrt{15}}{6} for x_{2}.