Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+7x^{2}-42x=0
Use the distributive property to multiply 7x by x-6.
9x^{2}-42x=0
Combine 2x^{2} and 7x^{2} to get 9x^{2}.
x\left(9x-42\right)=0
Factor out x.
x=0 x=\frac{14}{3}
To find equation solutions, solve x=0 and 9x-42=0.
2x^{2}+7x^{2}-42x=0
Use the distributive property to multiply 7x by x-6.
9x^{2}-42x=0
Combine 2x^{2} and 7x^{2} to get 9x^{2}.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -42 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-42\right)±42}{2\times 9}
Take the square root of \left(-42\right)^{2}.
x=\frac{42±42}{2\times 9}
The opposite of -42 is 42.
x=\frac{42±42}{18}
Multiply 2 times 9.
x=\frac{84}{18}
Now solve the equation x=\frac{42±42}{18} when ± is plus. Add 42 to 42.
x=\frac{14}{3}
Reduce the fraction \frac{84}{18} to lowest terms by extracting and canceling out 6.
x=\frac{0}{18}
Now solve the equation x=\frac{42±42}{18} when ± is minus. Subtract 42 from 42.
x=0
Divide 0 by 18.
x=\frac{14}{3} x=0
The equation is now solved.
2x^{2}+7x^{2}-42x=0
Use the distributive property to multiply 7x by x-6.
9x^{2}-42x=0
Combine 2x^{2} and 7x^{2} to get 9x^{2}.
\frac{9x^{2}-42x}{9}=\frac{0}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{42}{9}\right)x=\frac{0}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{14}{3}x=\frac{0}{9}
Reduce the fraction \frac{-42}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{14}{3}x=0
Divide 0 by 9.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{7}{3}\right)^{2}=\frac{49}{9}
Factor x^{2}-\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Take the square root of both sides of the equation.
x-\frac{7}{3}=\frac{7}{3} x-\frac{7}{3}=-\frac{7}{3}
Simplify.
x=\frac{14}{3} x=0
Add \frac{7}{3} to both sides of the equation.