Solve for x (complex solution)
x=-\frac{3}{2}+\sqrt{2}i\approx -1.5+1.414213562i
x=-\sqrt{2}i-\frac{3}{2}\approx -1.5-1.414213562i
Graph
Share
Copied to clipboard
2x^{2}+6x+\frac{17}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 2\times \frac{17}{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 6 for b, and \frac{17}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 2\times \frac{17}{2}}}{2\times 2}
Square 6.
x=\frac{-6±\sqrt{36-8\times \frac{17}{2}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-6±\sqrt{36-68}}{2\times 2}
Multiply -8 times \frac{17}{2}.
x=\frac{-6±\sqrt{-32}}{2\times 2}
Add 36 to -68.
x=\frac{-6±4\sqrt{2}i}{2\times 2}
Take the square root of -32.
x=\frac{-6±4\sqrt{2}i}{4}
Multiply 2 times 2.
x=\frac{-6+4\sqrt{2}i}{4}
Now solve the equation x=\frac{-6±4\sqrt{2}i}{4} when ± is plus. Add -6 to 4i\sqrt{2}.
x=-\frac{3}{2}+\sqrt{2}i
Divide -6+4i\sqrt{2} by 4.
x=\frac{-4\sqrt{2}i-6}{4}
Now solve the equation x=\frac{-6±4\sqrt{2}i}{4} when ± is minus. Subtract 4i\sqrt{2} from -6.
x=-\sqrt{2}i-\frac{3}{2}
Divide -6-4i\sqrt{2} by 4.
x=-\frac{3}{2}+\sqrt{2}i x=-\sqrt{2}i-\frac{3}{2}
The equation is now solved.
2x^{2}+6x+\frac{17}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+6x+\frac{17}{2}-\frac{17}{2}=-\frac{17}{2}
Subtract \frac{17}{2} from both sides of the equation.
2x^{2}+6x=-\frac{17}{2}
Subtracting \frac{17}{2} from itself leaves 0.
\frac{2x^{2}+6x}{2}=-\frac{\frac{17}{2}}{2}
Divide both sides by 2.
x^{2}+\frac{6}{2}x=-\frac{\frac{17}{2}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+3x=-\frac{\frac{17}{2}}{2}
Divide 6 by 2.
x^{2}+3x=-\frac{17}{4}
Divide -\frac{17}{2} by 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{17}{4}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{-17+9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-2
Add -\frac{17}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=-2
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-2}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\sqrt{2}i x+\frac{3}{2}=-\sqrt{2}i
Simplify.
x=-\frac{3}{2}+\sqrt{2}i x=-\sqrt{2}i-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}