Solve for x
x = \frac{\sqrt{681} - 5}{4} \approx 5.273994175
x=\frac{-\sqrt{681}-5}{4}\approx -7.773994175
Graph
Share
Copied to clipboard
2x^{2}+5x=82
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}+5x-82=82-82
Subtract 82 from both sides of the equation.
2x^{2}+5x-82=0
Subtracting 82 from itself leaves 0.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-82\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 5 for b, and -82 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\left(-82\right)}}{2\times 2}
Square 5.
x=\frac{-5±\sqrt{25-8\left(-82\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-5±\sqrt{25+656}}{2\times 2}
Multiply -8 times -82.
x=\frac{-5±\sqrt{681}}{2\times 2}
Add 25 to 656.
x=\frac{-5±\sqrt{681}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{681}-5}{4}
Now solve the equation x=\frac{-5±\sqrt{681}}{4} when ± is plus. Add -5 to \sqrt{681}.
x=\frac{-\sqrt{681}-5}{4}
Now solve the equation x=\frac{-5±\sqrt{681}}{4} when ± is minus. Subtract \sqrt{681} from -5.
x=\frac{\sqrt{681}-5}{4} x=\frac{-\sqrt{681}-5}{4}
The equation is now solved.
2x^{2}+5x=82
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+5x}{2}=\frac{82}{2}
Divide both sides by 2.
x^{2}+\frac{5}{2}x=\frac{82}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{5}{2}x=41
Divide 82 by 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=41+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=41+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{681}{16}
Add 41 to \frac{25}{16}.
\left(x+\frac{5}{4}\right)^{2}=\frac{681}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{681}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{\sqrt{681}}{4} x+\frac{5}{4}=-\frac{\sqrt{681}}{4}
Simplify.
x=\frac{\sqrt{681}-5}{4} x=\frac{-\sqrt{681}-5}{4}
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}