Solve for y
y=-\frac{x\left(2x+5\right)}{6\left(1-10x\right)}
x\neq \frac{1}{10}
Solve for x (complex solution)
x=\frac{\sqrt{3600y^{2}-648y+25}}{4}+15y-\frac{5}{4}
x=-\frac{\sqrt{3600y^{2}-648y+25}}{4}+15y-\frac{5}{4}
Solve for x
x=\frac{\sqrt{3600y^{2}-648y+25}}{4}+15y-\frac{5}{4}
x=-\frac{\sqrt{3600y^{2}-648y+25}}{4}+15y-\frac{5}{4}\text{, }y\geq \frac{\sqrt{26}}{150}+\frac{9}{100}\text{ or }y\leq -\frac{\sqrt{26}}{150}+\frac{9}{100}
Graph
Share
Copied to clipboard
2x^{2}+5x+6y-60xy=0
Subtract 60xy from both sides.
5x+6y-60xy=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
6y-60xy=-2x^{2}-5x
Subtract 5x from both sides.
\left(6-60x\right)y=-2x^{2}-5x
Combine all terms containing y.
\frac{\left(6-60x\right)y}{6-60x}=-\frac{x\left(2x+5\right)}{6-60x}
Divide both sides by 6-60x.
y=-\frac{x\left(2x+5\right)}{6-60x}
Dividing by 6-60x undoes the multiplication by 6-60x.
y=-\frac{x\left(2x+5\right)}{6\left(1-10x\right)}
Divide -x\left(5+2x\right) by 6-60x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}