Solve for x
x=-14
x=12
Graph
Share
Copied to clipboard
x^{2}+2x-168=0
Divide both sides by 2.
a+b=2 ab=1\left(-168\right)=-168
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-168. To find a and b, set up a system to be solved.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -168.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
Calculate the sum for each pair.
a=-12 b=14
The solution is the pair that gives sum 2.
\left(x^{2}-12x\right)+\left(14x-168\right)
Rewrite x^{2}+2x-168 as \left(x^{2}-12x\right)+\left(14x-168\right).
x\left(x-12\right)+14\left(x-12\right)
Factor out x in the first and 14 in the second group.
\left(x-12\right)\left(x+14\right)
Factor out common term x-12 by using distributive property.
x=12 x=-14
To find equation solutions, solve x-12=0 and x+14=0.
2x^{2}+4x-336=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-336\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -336 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-336\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-336\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+2688}}{2\times 2}
Multiply -8 times -336.
x=\frac{-4±\sqrt{2704}}{2\times 2}
Add 16 to 2688.
x=\frac{-4±52}{2\times 2}
Take the square root of 2704.
x=\frac{-4±52}{4}
Multiply 2 times 2.
x=\frac{48}{4}
Now solve the equation x=\frac{-4±52}{4} when ± is plus. Add -4 to 52.
x=12
Divide 48 by 4.
x=-\frac{56}{4}
Now solve the equation x=\frac{-4±52}{4} when ± is minus. Subtract 52 from -4.
x=-14
Divide -56 by 4.
x=12 x=-14
The equation is now solved.
2x^{2}+4x-336=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+4x-336-\left(-336\right)=-\left(-336\right)
Add 336 to both sides of the equation.
2x^{2}+4x=-\left(-336\right)
Subtracting -336 from itself leaves 0.
2x^{2}+4x=336
Subtract -336 from 0.
\frac{2x^{2}+4x}{2}=\frac{336}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=\frac{336}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=\frac{336}{2}
Divide 4 by 2.
x^{2}+2x=168
Divide 336 by 2.
x^{2}+2x+1^{2}=168+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=168+1
Square 1.
x^{2}+2x+1=169
Add 168 to 1.
\left(x+1\right)^{2}=169
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{169}
Take the square root of both sides of the equation.
x+1=13 x+1=-13
Simplify.
x=12 x=-14
Subtract 1 from both sides of the equation.
x ^ 2 +2x -168 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = -2 rs = -168
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -1 - u s = -1 + u
Two numbers r and s sum up to -2 exactly when the average of the two numbers is \frac{1}{2}*-2 = -1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-1 - u) (-1 + u) = -168
To solve for unknown quantity u, substitute these in the product equation rs = -168
1 - u^2 = -168
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -168-1 = -169
Simplify the expression by subtracting 1 on both sides
u^2 = 169 u = \pm\sqrt{169} = \pm 13
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-1 - 13 = -14 s = -1 + 13 = 12
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}