Solve for x
x = -\frac{13}{2} = -6\frac{1}{2} = -6.5
x=5
Graph
Share
Copied to clipboard
2x^{2}+3x-65=0
Subtract 65 from both sides.
a+b=3 ab=2\left(-65\right)=-130
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-65. To find a and b, set up a system to be solved.
-1,130 -2,65 -5,26 -10,13
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -130.
-1+130=129 -2+65=63 -5+26=21 -10+13=3
Calculate the sum for each pair.
a=-10 b=13
The solution is the pair that gives sum 3.
\left(2x^{2}-10x\right)+\left(13x-65\right)
Rewrite 2x^{2}+3x-65 as \left(2x^{2}-10x\right)+\left(13x-65\right).
2x\left(x-5\right)+13\left(x-5\right)
Factor out 2x in the first and 13 in the second group.
\left(x-5\right)\left(2x+13\right)
Factor out common term x-5 by using distributive property.
x=5 x=-\frac{13}{2}
To find equation solutions, solve x-5=0 and 2x+13=0.
2x^{2}+3x=65
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}+3x-65=65-65
Subtract 65 from both sides of the equation.
2x^{2}+3x-65=0
Subtracting 65 from itself leaves 0.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-65\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and -65 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-65\right)}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\left(-65\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9+520}}{2\times 2}
Multiply -8 times -65.
x=\frac{-3±\sqrt{529}}{2\times 2}
Add 9 to 520.
x=\frac{-3±23}{2\times 2}
Take the square root of 529.
x=\frac{-3±23}{4}
Multiply 2 times 2.
x=\frac{20}{4}
Now solve the equation x=\frac{-3±23}{4} when ± is plus. Add -3 to 23.
x=5
Divide 20 by 4.
x=-\frac{26}{4}
Now solve the equation x=\frac{-3±23}{4} when ± is minus. Subtract 23 from -3.
x=-\frac{13}{2}
Reduce the fraction \frac{-26}{4} to lowest terms by extracting and canceling out 2.
x=5 x=-\frac{13}{2}
The equation is now solved.
2x^{2}+3x=65
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+3x}{2}=\frac{65}{2}
Divide both sides by 2.
x^{2}+\frac{3}{2}x=\frac{65}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{65}{2}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{65}{2}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{529}{16}
Add \frac{65}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=\frac{529}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{529}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{23}{4} x+\frac{3}{4}=-\frac{23}{4}
Simplify.
x=5 x=-\frac{13}{2}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}