2 x ^ { 2 } + 3 x = ( 2 x - 1 ) ( x + m
Solve for m
m=-\frac{4x}{1-2x}
x\neq \frac{1}{2}
Solve for x
x=-\frac{m}{2\left(2-m\right)}
m\neq 2
Graph
Share
Copied to clipboard
2x^{2}+3x=2x^{2}+2xm-x-m
Use the distributive property to multiply 2x-1 by x+m.
2x^{2}+2xm-x-m=2x^{2}+3x
Swap sides so that all variable terms are on the left hand side.
2xm-x-m=2x^{2}+3x-2x^{2}
Subtract 2x^{2} from both sides.
2xm-x-m=3x
Combine 2x^{2} and -2x^{2} to get 0.
2xm-m=3x+x
Add x to both sides.
2xm-m=4x
Combine 3x and x to get 4x.
\left(2x-1\right)m=4x
Combine all terms containing m.
\frac{\left(2x-1\right)m}{2x-1}=\frac{4x}{2x-1}
Divide both sides by 2x-1.
m=\frac{4x}{2x-1}
Dividing by 2x-1 undoes the multiplication by 2x-1.
2x^{2}+3x=2x^{2}+2xm-x-m
Use the distributive property to multiply 2x-1 by x+m.
2x^{2}+3x-2x^{2}=2xm-x-m
Subtract 2x^{2} from both sides.
3x=2xm-x-m
Combine 2x^{2} and -2x^{2} to get 0.
3x-2xm=-x-m
Subtract 2xm from both sides.
3x-2xm+x=-m
Add x to both sides.
4x-2xm=-m
Combine 3x and x to get 4x.
\left(4-2m\right)x=-m
Combine all terms containing x.
\frac{\left(4-2m\right)x}{4-2m}=-\frac{m}{4-2m}
Divide both sides by 4-2m.
x=-\frac{m}{4-2m}
Dividing by 4-2m undoes the multiplication by 4-2m.
x=-\frac{m}{2\left(2-m\right)}
Divide -m by 4-2m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}