Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}=27.3-3
Subtract 3 from both sides.
2x^{2}=24.3
Subtract 3 from 27.3 to get 24.3.
x^{2}=\frac{24.3}{2}
Divide both sides by 2.
x^{2}=\frac{243}{20}
Expand \frac{24.3}{2} by multiplying both numerator and the denominator by 10.
x=\frac{9\sqrt{15}}{10} x=-\frac{9\sqrt{15}}{10}
Take the square root of both sides of the equation.
2x^{2}+3-27.3=0
Subtract 27.3 from both sides.
2x^{2}-24.3=0
Subtract 27.3 from 3 to get -24.3.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-24.3\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -24.3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-24.3\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-24.3\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{194.4}}{2\times 2}
Multiply -8 times -24.3.
x=\frac{0±\frac{18\sqrt{15}}{5}}{2\times 2}
Take the square root of 194.4.
x=\frac{0±\frac{18\sqrt{15}}{5}}{4}
Multiply 2 times 2.
x=\frac{9\sqrt{15}}{10}
Now solve the equation x=\frac{0±\frac{18\sqrt{15}}{5}}{4} when ± is plus.
x=-\frac{9\sqrt{15}}{10}
Now solve the equation x=\frac{0±\frac{18\sqrt{15}}{5}}{4} when ± is minus.
x=\frac{9\sqrt{15}}{10} x=-\frac{9\sqrt{15}}{10}
The equation is now solved.