Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+20x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\times 2\times 2}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{400-4\times 2\times 2}}{2\times 2}
Square 20.
x=\frac{-20±\sqrt{400-8\times 2}}{2\times 2}
Multiply -4 times 2.
x=\frac{-20±\sqrt{400-16}}{2\times 2}
Multiply -8 times 2.
x=\frac{-20±\sqrt{384}}{2\times 2}
Add 400 to -16.
x=\frac{-20±8\sqrt{6}}{2\times 2}
Take the square root of 384.
x=\frac{-20±8\sqrt{6}}{4}
Multiply 2 times 2.
x=\frac{8\sqrt{6}-20}{4}
Now solve the equation x=\frac{-20±8\sqrt{6}}{4} when ± is plus. Add -20 to 8\sqrt{6}.
x=2\sqrt{6}-5
Divide -20+8\sqrt{6} by 4.
x=\frac{-8\sqrt{6}-20}{4}
Now solve the equation x=\frac{-20±8\sqrt{6}}{4} when ± is minus. Subtract 8\sqrt{6} from -20.
x=-2\sqrt{6}-5
Divide -20-8\sqrt{6} by 4.
2x^{2}+20x+2=2\left(x-\left(2\sqrt{6}-5\right)\right)\left(x-\left(-2\sqrt{6}-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5+2\sqrt{6} for x_{1} and -5-2\sqrt{6} for x_{2}.
x ^ 2 +10x +1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = -10 rs = 1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -5 - u s = -5 + u
Two numbers r and s sum up to -10 exactly when the average of the two numbers is \frac{1}{2}*-10 = -5. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-5 - u) (-5 + u) = 1
To solve for unknown quantity u, substitute these in the product equation rs = 1
25 - u^2 = 1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 1-25 = -24
Simplify the expression by subtracting 25 on both sides
u^2 = 24 u = \pm\sqrt{24} = \pm \sqrt{24}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-5 - \sqrt{24} = -9.899 s = -5 + \sqrt{24} = -0.101
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.