Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}=95-20
Subtract 20 from both sides.
2x^{2}=75
Subtract 20 from 95 to get 75.
x^{2}=\frac{75}{2}
Divide both sides by 2.
x=\frac{5\sqrt{6}}{2} x=-\frac{5\sqrt{6}}{2}
Take the square root of both sides of the equation.
2x^{2}+20-95=0
Subtract 95 from both sides.
2x^{2}-75=0
Subtract 95 from 20 to get -75.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-75\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-75\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-75\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{600}}{2\times 2}
Multiply -8 times -75.
x=\frac{0±10\sqrt{6}}{2\times 2}
Take the square root of 600.
x=\frac{0±10\sqrt{6}}{4}
Multiply 2 times 2.
x=\frac{5\sqrt{6}}{2}
Now solve the equation x=\frac{0±10\sqrt{6}}{4} when ± is plus.
x=-\frac{5\sqrt{6}}{2}
Now solve the equation x=\frac{0±10\sqrt{6}}{4} when ± is minus.
x=\frac{5\sqrt{6}}{2} x=-\frac{5\sqrt{6}}{2}
The equation is now solved.