Solve for x
x = \frac{\sqrt{241} - 1}{2} \approx 7.262087348
x=\frac{-\sqrt{241}-1}{2}\approx -8.262087348
Graph
Share
Copied to clipboard
2x^{2}+2x-120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-120\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\left(-120\right)}}{2\times 2}
Square 2.
x=\frac{-2±\sqrt{4-8\left(-120\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-2±\sqrt{4+960}}{2\times 2}
Multiply -8 times -120.
x=\frac{-2±\sqrt{964}}{2\times 2}
Add 4 to 960.
x=\frac{-2±2\sqrt{241}}{2\times 2}
Take the square root of 964.
x=\frac{-2±2\sqrt{241}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{241}-2}{4}
Now solve the equation x=\frac{-2±2\sqrt{241}}{4} when ± is plus. Add -2 to 2\sqrt{241}.
x=\frac{\sqrt{241}-1}{2}
Divide -2+2\sqrt{241} by 4.
x=\frac{-2\sqrt{241}-2}{4}
Now solve the equation x=\frac{-2±2\sqrt{241}}{4} when ± is minus. Subtract 2\sqrt{241} from -2.
x=\frac{-\sqrt{241}-1}{2}
Divide -2-2\sqrt{241} by 4.
x=\frac{\sqrt{241}-1}{2} x=\frac{-\sqrt{241}-1}{2}
The equation is now solved.
2x^{2}+2x-120=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+2x-120-\left(-120\right)=-\left(-120\right)
Add 120 to both sides of the equation.
2x^{2}+2x=-\left(-120\right)
Subtracting -120 from itself leaves 0.
2x^{2}+2x=120
Subtract -120 from 0.
\frac{2x^{2}+2x}{2}=\frac{120}{2}
Divide both sides by 2.
x^{2}+\frac{2}{2}x=\frac{120}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+x=\frac{120}{2}
Divide 2 by 2.
x^{2}+x=60
Divide 120 by 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=60+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=60+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{241}{4}
Add 60 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{241}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{241}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{241}}{2} x+\frac{1}{2}=-\frac{\sqrt{241}}{2}
Simplify.
x=\frac{\sqrt{241}-1}{2} x=\frac{-\sqrt{241}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
x ^ 2 +1x -60 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = -1 rs = -60
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{2} - u s = -\frac{1}{2} + u
Two numbers r and s sum up to -1 exactly when the average of the two numbers is \frac{1}{2}*-1 = -\frac{1}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{2} - u) (-\frac{1}{2} + u) = -60
To solve for unknown quantity u, substitute these in the product equation rs = -60
\frac{1}{4} - u^2 = -60
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -60-\frac{1}{4} = -\frac{241}{4}
Simplify the expression by subtracting \frac{1}{4} on both sides
u^2 = \frac{241}{4} u = \pm\sqrt{\frac{241}{4}} = \pm \frac{\sqrt{241}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{2} - \frac{\sqrt{241}}{2} = -8.262 s = -\frac{1}{2} + \frac{\sqrt{241}}{2} = 7.262
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}