Solve for x
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
x=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
2x^{2}+2x-\frac{8}{9}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-\frac{8}{9}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -\frac{8}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\left(-\frac{8}{9}\right)}}{2\times 2}
Square 2.
x=\frac{-2±\sqrt{4-8\left(-\frac{8}{9}\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-2±\sqrt{4+\frac{64}{9}}}{2\times 2}
Multiply -8 times -\frac{8}{9}.
x=\frac{-2±\sqrt{\frac{100}{9}}}{2\times 2}
Add 4 to \frac{64}{9}.
x=\frac{-2±\frac{10}{3}}{2\times 2}
Take the square root of \frac{100}{9}.
x=\frac{-2±\frac{10}{3}}{4}
Multiply 2 times 2.
x=\frac{\frac{4}{3}}{4}
Now solve the equation x=\frac{-2±\frac{10}{3}}{4} when ± is plus. Add -2 to \frac{10}{3}.
x=\frac{1}{3}
Divide \frac{4}{3} by 4.
x=-\frac{\frac{16}{3}}{4}
Now solve the equation x=\frac{-2±\frac{10}{3}}{4} when ± is minus. Subtract \frac{10}{3} from -2.
x=-\frac{4}{3}
Divide -\frac{16}{3} by 4.
x=\frac{1}{3} x=-\frac{4}{3}
The equation is now solved.
2x^{2}+2x-\frac{8}{9}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+2x-\frac{8}{9}-\left(-\frac{8}{9}\right)=-\left(-\frac{8}{9}\right)
Add \frac{8}{9} to both sides of the equation.
2x^{2}+2x=-\left(-\frac{8}{9}\right)
Subtracting -\frac{8}{9} from itself leaves 0.
2x^{2}+2x=\frac{8}{9}
Subtract -\frac{8}{9} from 0.
\frac{2x^{2}+2x}{2}=\frac{\frac{8}{9}}{2}
Divide both sides by 2.
x^{2}+\frac{2}{2}x=\frac{\frac{8}{9}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+x=\frac{\frac{8}{9}}{2}
Divide 2 by 2.
x^{2}+x=\frac{4}{9}
Divide \frac{8}{9} by 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{4}{9}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{4}{9}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{25}{36}
Add \frac{4}{9} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{36}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{5}{6} x+\frac{1}{2}=-\frac{5}{6}
Simplify.
x=\frac{1}{3} x=-\frac{4}{3}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}