Solve for x (complex solution)
x=\sqrt{42}-3\approx 3.480740698
x=-\left(\sqrt{42}+3\right)\approx -9.480740698
Solve for x
x=\sqrt{42}-3\approx 3.480740698
x=-\sqrt{42}-3\approx -9.480740698
Graph
Share
Copied to clipboard
2x^{2}+12x=66
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}+12x-66=66-66
Subtract 66 from both sides of the equation.
2x^{2}+12x-66=0
Subtracting 66 from itself leaves 0.
x=\frac{-12±\sqrt{12^{2}-4\times 2\left(-66\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 12 for b, and -66 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 2\left(-66\right)}}{2\times 2}
Square 12.
x=\frac{-12±\sqrt{144-8\left(-66\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-12±\sqrt{144+528}}{2\times 2}
Multiply -8 times -66.
x=\frac{-12±\sqrt{672}}{2\times 2}
Add 144 to 528.
x=\frac{-12±4\sqrt{42}}{2\times 2}
Take the square root of 672.
x=\frac{-12±4\sqrt{42}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{42}-12}{4}
Now solve the equation x=\frac{-12±4\sqrt{42}}{4} when ± is plus. Add -12 to 4\sqrt{42}.
x=\sqrt{42}-3
Divide -12+4\sqrt{42} by 4.
x=\frac{-4\sqrt{42}-12}{4}
Now solve the equation x=\frac{-12±4\sqrt{42}}{4} when ± is minus. Subtract 4\sqrt{42} from -12.
x=-\sqrt{42}-3
Divide -12-4\sqrt{42} by 4.
x=\sqrt{42}-3 x=-\sqrt{42}-3
The equation is now solved.
2x^{2}+12x=66
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+12x}{2}=\frac{66}{2}
Divide both sides by 2.
x^{2}+\frac{12}{2}x=\frac{66}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+6x=\frac{66}{2}
Divide 12 by 2.
x^{2}+6x=33
Divide 66 by 2.
x^{2}+6x+3^{2}=33+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=33+9
Square 3.
x^{2}+6x+9=42
Add 33 to 9.
\left(x+3\right)^{2}=42
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{42}
Take the square root of both sides of the equation.
x+3=\sqrt{42} x+3=-\sqrt{42}
Simplify.
x=\sqrt{42}-3 x=-\sqrt{42}-3
Subtract 3 from both sides of the equation.
2x^{2}+12x=66
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}+12x-66=66-66
Subtract 66 from both sides of the equation.
2x^{2}+12x-66=0
Subtracting 66 from itself leaves 0.
x=\frac{-12±\sqrt{12^{2}-4\times 2\left(-66\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 12 for b, and -66 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 2\left(-66\right)}}{2\times 2}
Square 12.
x=\frac{-12±\sqrt{144-8\left(-66\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-12±\sqrt{144+528}}{2\times 2}
Multiply -8 times -66.
x=\frac{-12±\sqrt{672}}{2\times 2}
Add 144 to 528.
x=\frac{-12±4\sqrt{42}}{2\times 2}
Take the square root of 672.
x=\frac{-12±4\sqrt{42}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{42}-12}{4}
Now solve the equation x=\frac{-12±4\sqrt{42}}{4} when ± is plus. Add -12 to 4\sqrt{42}.
x=\sqrt{42}-3
Divide -12+4\sqrt{42} by 4.
x=\frac{-4\sqrt{42}-12}{4}
Now solve the equation x=\frac{-12±4\sqrt{42}}{4} when ± is minus. Subtract 4\sqrt{42} from -12.
x=-\sqrt{42}-3
Divide -12-4\sqrt{42} by 4.
x=\sqrt{42}-3 x=-\sqrt{42}-3
The equation is now solved.
2x^{2}+12x=66
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+12x}{2}=\frac{66}{2}
Divide both sides by 2.
x^{2}+\frac{12}{2}x=\frac{66}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+6x=\frac{66}{2}
Divide 12 by 2.
x^{2}+6x=33
Divide 66 by 2.
x^{2}+6x+3^{2}=33+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=33+9
Square 3.
x^{2}+6x+9=42
Add 33 to 9.
\left(x+3\right)^{2}=42
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{42}
Take the square root of both sides of the equation.
x+3=\sqrt{42} x+3=-\sqrt{42}
Simplify.
x=\sqrt{42}-3 x=-\sqrt{42}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}