Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}+6x\right)
Factor out 2.
x\left(x+6\right)
Consider x^{2}+6x. Factor out x.
2x\left(x+6\right)
Rewrite the complete factored expression.
2x^{2}+12x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±12}{2\times 2}
Take the square root of 12^{2}.
x=\frac{-12±12}{4}
Multiply 2 times 2.
x=\frac{0}{4}
Now solve the equation x=\frac{-12±12}{4} when ± is plus. Add -12 to 12.
x=0
Divide 0 by 4.
x=-\frac{24}{4}
Now solve the equation x=\frac{-12±12}{4} when ± is minus. Subtract 12 from -12.
x=-6
Divide -24 by 4.
2x^{2}+12x=2x\left(x-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -6 for x_{2}.
2x^{2}+12x=2x\left(x+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.