Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+11x+\frac{3}{20}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\times 2\times \frac{3}{20}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 11 for b, and \frac{3}{20} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 2\times \frac{3}{20}}}{2\times 2}
Square 11.
x=\frac{-11±\sqrt{121-8\times \frac{3}{20}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-11±\sqrt{121-\frac{6}{5}}}{2\times 2}
Multiply -8 times \frac{3}{20}.
x=\frac{-11±\sqrt{\frac{599}{5}}}{2\times 2}
Add 121 to -\frac{6}{5}.
x=\frac{-11±\frac{\sqrt{2995}}{5}}{2\times 2}
Take the square root of \frac{599}{5}.
x=\frac{-11±\frac{\sqrt{2995}}{5}}{4}
Multiply 2 times 2.
x=\frac{\frac{\sqrt{2995}}{5}-11}{4}
Now solve the equation x=\frac{-11±\frac{\sqrt{2995}}{5}}{4} when ± is plus. Add -11 to \frac{\sqrt{2995}}{5}.
x=\frac{\sqrt{2995}}{20}-\frac{11}{4}
Divide -11+\frac{\sqrt{2995}}{5} by 4.
x=\frac{-\frac{\sqrt{2995}}{5}-11}{4}
Now solve the equation x=\frac{-11±\frac{\sqrt{2995}}{5}}{4} when ± is minus. Subtract \frac{\sqrt{2995}}{5} from -11.
x=-\frac{\sqrt{2995}}{20}-\frac{11}{4}
Divide -11-\frac{\sqrt{2995}}{5} by 4.
x=\frac{\sqrt{2995}}{20}-\frac{11}{4} x=-\frac{\sqrt{2995}}{20}-\frac{11}{4}
The equation is now solved.
2x^{2}+11x+\frac{3}{20}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+11x+\frac{3}{20}-\frac{3}{20}=-\frac{3}{20}
Subtract \frac{3}{20} from both sides of the equation.
2x^{2}+11x=-\frac{3}{20}
Subtracting \frac{3}{20} from itself leaves 0.
\frac{2x^{2}+11x}{2}=-\frac{\frac{3}{20}}{2}
Divide both sides by 2.
x^{2}+\frac{11}{2}x=-\frac{\frac{3}{20}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{11}{2}x=-\frac{3}{40}
Divide -\frac{3}{20} by 2.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=-\frac{3}{40}+\left(\frac{11}{4}\right)^{2}
Divide \frac{11}{2}, the coefficient of the x term, by 2 to get \frac{11}{4}. Then add the square of \frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{2}x+\frac{121}{16}=-\frac{3}{40}+\frac{121}{16}
Square \frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{599}{80}
Add -\frac{3}{40} to \frac{121}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{4}\right)^{2}=\frac{599}{80}
Factor x^{2}+\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{599}{80}}
Take the square root of both sides of the equation.
x+\frac{11}{4}=\frac{\sqrt{2995}}{20} x+\frac{11}{4}=-\frac{\sqrt{2995}}{20}
Simplify.
x=\frac{\sqrt{2995}}{20}-\frac{11}{4} x=-\frac{\sqrt{2995}}{20}-\frac{11}{4}
Subtract \frac{11}{4} from both sides of the equation.