Solve for x
x = \frac{5 \sqrt{7} - 5}{2} \approx 4.114378278
x=\frac{-5\sqrt{7}-5}{2}\approx -9.114378278
Graph
Share
Copied to clipboard
2x^{2}+10x-75=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\times 2\left(-75\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 10 for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 2\left(-75\right)}}{2\times 2}
Square 10.
x=\frac{-10±\sqrt{100-8\left(-75\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-10±\sqrt{100+600}}{2\times 2}
Multiply -8 times -75.
x=\frac{-10±\sqrt{700}}{2\times 2}
Add 100 to 600.
x=\frac{-10±10\sqrt{7}}{2\times 2}
Take the square root of 700.
x=\frac{-10±10\sqrt{7}}{4}
Multiply 2 times 2.
x=\frac{10\sqrt{7}-10}{4}
Now solve the equation x=\frac{-10±10\sqrt{7}}{4} when ± is plus. Add -10 to 10\sqrt{7}.
x=\frac{5\sqrt{7}-5}{2}
Divide -10+10\sqrt{7} by 4.
x=\frac{-10\sqrt{7}-10}{4}
Now solve the equation x=\frac{-10±10\sqrt{7}}{4} when ± is minus. Subtract 10\sqrt{7} from -10.
x=\frac{-5\sqrt{7}-5}{2}
Divide -10-10\sqrt{7} by 4.
x=\frac{5\sqrt{7}-5}{2} x=\frac{-5\sqrt{7}-5}{2}
The equation is now solved.
2x^{2}+10x-75=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+10x-75-\left(-75\right)=-\left(-75\right)
Add 75 to both sides of the equation.
2x^{2}+10x=-\left(-75\right)
Subtracting -75 from itself leaves 0.
2x^{2}+10x=75
Subtract -75 from 0.
\frac{2x^{2}+10x}{2}=\frac{75}{2}
Divide both sides by 2.
x^{2}+\frac{10}{2}x=\frac{75}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+5x=\frac{75}{2}
Divide 10 by 2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\frac{75}{2}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=\frac{75}{2}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{175}{4}
Add \frac{75}{2} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=\frac{175}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{175}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{5\sqrt{7}}{2} x+\frac{5}{2}=-\frac{5\sqrt{7}}{2}
Simplify.
x=\frac{5\sqrt{7}-5}{2} x=\frac{-5\sqrt{7}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
x ^ 2 +5x -\frac{75}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = -5 rs = -\frac{75}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{2} - u s = -\frac{5}{2} + u
Two numbers r and s sum up to -5 exactly when the average of the two numbers is \frac{1}{2}*-5 = -\frac{5}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{2} - u) (-\frac{5}{2} + u) = -\frac{75}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{75}{2}
\frac{25}{4} - u^2 = -\frac{75}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{75}{2}-\frac{25}{4} = -\frac{175}{4}
Simplify the expression by subtracting \frac{25}{4} on both sides
u^2 = \frac{175}{4} u = \pm\sqrt{\frac{175}{4}} = \pm \frac{\sqrt{175}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{2} - \frac{\sqrt{175}}{2} = -9.114 s = -\frac{5}{2} + \frac{\sqrt{175}}{2} = 4.114
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}