Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+10x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\times 2\left(-4\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 10 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 2\left(-4\right)}}{2\times 2}
Square 10.
x=\frac{-10±\sqrt{100-8\left(-4\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-10±\sqrt{100+32}}{2\times 2}
Multiply -8 times -4.
x=\frac{-10±\sqrt{132}}{2\times 2}
Add 100 to 32.
x=\frac{-10±2\sqrt{33}}{2\times 2}
Take the square root of 132.
x=\frac{-10±2\sqrt{33}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{33}-10}{4}
Now solve the equation x=\frac{-10±2\sqrt{33}}{4} when ± is plus. Add -10 to 2\sqrt{33}.
x=\frac{\sqrt{33}-5}{2}
Divide -10+2\sqrt{33} by 4.
x=\frac{-2\sqrt{33}-10}{4}
Now solve the equation x=\frac{-10±2\sqrt{33}}{4} when ± is minus. Subtract 2\sqrt{33} from -10.
x=\frac{-\sqrt{33}-5}{2}
Divide -10-2\sqrt{33} by 4.
x=\frac{\sqrt{33}-5}{2} x=\frac{-\sqrt{33}-5}{2}
The equation is now solved.
2x^{2}+10x-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+10x-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
2x^{2}+10x=-\left(-4\right)
Subtracting -4 from itself leaves 0.
2x^{2}+10x=4
Subtract -4 from 0.
\frac{2x^{2}+10x}{2}=\frac{4}{2}
Divide both sides by 2.
x^{2}+\frac{10}{2}x=\frac{4}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+5x=\frac{4}{2}
Divide 10 by 2.
x^{2}+5x=2
Divide 4 by 2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=2+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=2+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{33}{4}
Add 2 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{33}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{33}}{2} x+\frac{5}{2}=-\frac{\sqrt{33}}{2}
Simplify.
x=\frac{\sqrt{33}-5}{2} x=\frac{-\sqrt{33}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
x ^ 2 +5x -2 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = -5 rs = -2
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{2} - u s = -\frac{5}{2} + u
Two numbers r and s sum up to -5 exactly when the average of the two numbers is \frac{1}{2}*-5 = -\frac{5}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{2} - u) (-\frac{5}{2} + u) = -2
To solve for unknown quantity u, substitute these in the product equation rs = -2
\frac{25}{4} - u^2 = -2
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -2-\frac{25}{4} = -\frac{33}{4}
Simplify the expression by subtracting \frac{25}{4} on both sides
u^2 = \frac{33}{4} u = \pm\sqrt{\frac{33}{4}} = \pm \frac{\sqrt{33}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{2} - \frac{\sqrt{33}}{2} = -5.372 s = -\frac{5}{2} + \frac{\sqrt{33}}{2} = 0.372
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.