Solve for x
x=\frac{\sqrt{39}-5}{2}\approx 0.622498999
x=\frac{-\sqrt{39}-5}{2}\approx -5.622498999
Graph
Share
Copied to clipboard
2x^{2}+10x=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}+10x-7=7-7
Subtract 7 from both sides of the equation.
2x^{2}+10x-7=0
Subtracting 7 from itself leaves 0.
x=\frac{-10±\sqrt{10^{2}-4\times 2\left(-7\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 10 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 2\left(-7\right)}}{2\times 2}
Square 10.
x=\frac{-10±\sqrt{100-8\left(-7\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-10±\sqrt{100+56}}{2\times 2}
Multiply -8 times -7.
x=\frac{-10±\sqrt{156}}{2\times 2}
Add 100 to 56.
x=\frac{-10±2\sqrt{39}}{2\times 2}
Take the square root of 156.
x=\frac{-10±2\sqrt{39}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{39}-10}{4}
Now solve the equation x=\frac{-10±2\sqrt{39}}{4} when ± is plus. Add -10 to 2\sqrt{39}.
x=\frac{\sqrt{39}-5}{2}
Divide -10+2\sqrt{39} by 4.
x=\frac{-2\sqrt{39}-10}{4}
Now solve the equation x=\frac{-10±2\sqrt{39}}{4} when ± is minus. Subtract 2\sqrt{39} from -10.
x=\frac{-\sqrt{39}-5}{2}
Divide -10-2\sqrt{39} by 4.
x=\frac{\sqrt{39}-5}{2} x=\frac{-\sqrt{39}-5}{2}
The equation is now solved.
2x^{2}+10x=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+10x}{2}=\frac{7}{2}
Divide both sides by 2.
x^{2}+\frac{10}{2}x=\frac{7}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+5x=\frac{7}{2}
Divide 10 by 2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\frac{7}{2}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=\frac{7}{2}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{39}{4}
Add \frac{7}{2} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=\frac{39}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{39}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{39}}{2} x+\frac{5}{2}=-\frac{\sqrt{39}}{2}
Simplify.
x=\frac{\sqrt{39}-5}{2} x=\frac{-\sqrt{39}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}