Solve for k
k=-2x+5+\frac{18}{x}
x\neq 0
Solve for x
x=\frac{\sqrt{k^{2}-10k+169}-k+5}{4}
x=\frac{-\sqrt{k^{2}-10k+169}-k+5}{4}
Graph
Share
Copied to clipboard
2x^{2}+kx-5x-18=0
Use the distributive property to multiply k-5 by x.
kx-5x-18=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
kx-18=-2x^{2}+5x
Add 5x to both sides.
kx=-2x^{2}+5x+18
Add 18 to both sides.
xk=18+5x-2x^{2}
The equation is in standard form.
\frac{xk}{x}=-\frac{\left(2x-9\right)\left(x+2\right)}{x}
Divide both sides by x.
k=-\frac{\left(2x-9\right)\left(x+2\right)}{x}
Dividing by x undoes the multiplication by x.
k=-2x+5+\frac{18}{x}
Divide -\left(-9+2x\right)\left(2+x\right) by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}