Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+\frac{3}{8}x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{3}{8}±\sqrt{\left(\frac{3}{8}\right)^{2}-4\times 2\times 16}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, \frac{3}{8} for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-4\times 2\times 16}}{2\times 2}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-8\times 16}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-128}}{2\times 2}
Multiply -8 times 16.
x=\frac{-\frac{3}{8}±\sqrt{-\frac{8183}{64}}}{2\times 2}
Add \frac{9}{64} to -128.
x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{2\times 2}
Take the square root of -\frac{8183}{64}.
x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4}
Multiply 2 times 2.
x=\frac{-3+7\sqrt{167}i}{4\times 8}
Now solve the equation x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4} when ± is plus. Add -\frac{3}{8} to \frac{7i\sqrt{167}}{8}.
x=\frac{-3+7\sqrt{167}i}{32}
Divide \frac{-3+7i\sqrt{167}}{8} by 4.
x=\frac{-7\sqrt{167}i-3}{4\times 8}
Now solve the equation x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4} when ± is minus. Subtract \frac{7i\sqrt{167}}{8} from -\frac{3}{8}.
x=\frac{-7\sqrt{167}i-3}{32}
Divide \frac{-3-7i\sqrt{167}}{8} by 4.
x=\frac{-3+7\sqrt{167}i}{32} x=\frac{-7\sqrt{167}i-3}{32}
The equation is now solved.
2x^{2}+\frac{3}{8}x+16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+\frac{3}{8}x+16-16=-16
Subtract 16 from both sides of the equation.
2x^{2}+\frac{3}{8}x=-16
Subtracting 16 from itself leaves 0.
\frac{2x^{2}+\frac{3}{8}x}{2}=-\frac{16}{2}
Divide both sides by 2.
x^{2}+\frac{\frac{3}{8}}{2}x=-\frac{16}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{16}x=-\frac{16}{2}
Divide \frac{3}{8} by 2.
x^{2}+\frac{3}{16}x=-8
Divide -16 by 2.
x^{2}+\frac{3}{16}x+\left(\frac{3}{32}\right)^{2}=-8+\left(\frac{3}{32}\right)^{2}
Divide \frac{3}{16}, the coefficient of the x term, by 2 to get \frac{3}{32}. Then add the square of \frac{3}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{16}x+\frac{9}{1024}=-8+\frac{9}{1024}
Square \frac{3}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{16}x+\frac{9}{1024}=-\frac{8183}{1024}
Add -8 to \frac{9}{1024}.
\left(x+\frac{3}{32}\right)^{2}=-\frac{8183}{1024}
Factor x^{2}+\frac{3}{16}x+\frac{9}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{32}\right)^{2}}=\sqrt{-\frac{8183}{1024}}
Take the square root of both sides of the equation.
x+\frac{3}{32}=\frac{7\sqrt{167}i}{32} x+\frac{3}{32}=-\frac{7\sqrt{167}i}{32}
Simplify.
x=\frac{-3+7\sqrt{167}i}{32} x=\frac{-7\sqrt{167}i-3}{32}
Subtract \frac{3}{32} from both sides of the equation.