Solve for x
x=-2
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
2x^{2}+\frac{1}{2}x+1=x^{2}-2x
Use the distributive property to multiply x by x-2.
2x^{2}+\frac{1}{2}x+1-x^{2}=-2x
Subtract x^{2} from both sides.
x^{2}+\frac{1}{2}x+1=-2x
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+\frac{1}{2}x+1+2x=0
Add 2x to both sides.
x^{2}+\frac{5}{2}x+1=0
Combine \frac{1}{2}x and 2x to get \frac{5}{2}x.
x=\frac{-\frac{5}{2}±\sqrt{\left(\frac{5}{2}\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{5}{2} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-4}}{2}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{5}{2}±\sqrt{\frac{9}{4}}}{2}
Add \frac{25}{4} to -4.
x=\frac{-\frac{5}{2}±\frac{3}{2}}{2}
Take the square root of \frac{9}{4}.
x=-\frac{1}{2}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{3}{2}}{2} when ± is plus. Add -\frac{5}{2} to \frac{3}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{4}{2}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{3}{2}}{2} when ± is minus. Subtract \frac{3}{2} from -\frac{5}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-2
Divide -4 by 2.
x=-\frac{1}{2} x=-2
The equation is now solved.
2x^{2}+\frac{1}{2}x+1=x^{2}-2x
Use the distributive property to multiply x by x-2.
2x^{2}+\frac{1}{2}x+1-x^{2}=-2x
Subtract x^{2} from both sides.
x^{2}+\frac{1}{2}x+1=-2x
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+\frac{1}{2}x+1+2x=0
Add 2x to both sides.
x^{2}+\frac{5}{2}x+1=0
Combine \frac{1}{2}x and 2x to get \frac{5}{2}x.
x^{2}+\frac{5}{2}x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=-1+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-1+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{9}{16}
Add -1 to \frac{25}{16}.
\left(x+\frac{5}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{3}{4} x+\frac{5}{4}=-\frac{3}{4}
Simplify.
x=-\frac{1}{2} x=-2
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}