Solve for a
a=-\frac{2x}{x+1}
x\neq -1
Solve for x
x=-\frac{a}{a+2}
a\neq -2
Graph
Share
Copied to clipboard
2x+ax+3a=2a
Use the distributive property to multiply a by x+3.
2x+ax+3a-2a=0
Subtract 2a from both sides.
2x+ax+a=0
Combine 3a and -2a to get a.
ax+a=-2x
Subtract 2x from both sides. Anything subtracted from zero gives its negation.
\left(x+1\right)a=-2x
Combine all terms containing a.
\frac{\left(x+1\right)a}{x+1}=-\frac{2x}{x+1}
Divide both sides by x+1.
a=-\frac{2x}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
2x+ax+3a=2a
Use the distributive property to multiply a by x+3.
2x+ax=2a-3a
Subtract 3a from both sides.
2x+ax=-a
Combine 2a and -3a to get -a.
\left(2+a\right)x=-a
Combine all terms containing x.
\left(a+2\right)x=-a
The equation is in standard form.
\frac{\left(a+2\right)x}{a+2}=-\frac{a}{a+2}
Divide both sides by 2+a.
x=-\frac{a}{a+2}
Dividing by 2+a undoes the multiplication by 2+a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}