Solve for x
x=-\frac{2}{19}\approx -0.105263158
Graph
Share
Copied to clipboard
2x+9\left(-\frac{5}{57}\right)=-1
Fraction \frac{-5}{57} can be rewritten as -\frac{5}{57} by extracting the negative sign.
2x+\frac{9\left(-5\right)}{57}=-1
Express 9\left(-\frac{5}{57}\right) as a single fraction.
2x+\frac{-45}{57}=-1
Multiply 9 and -5 to get -45.
2x-\frac{15}{19}=-1
Reduce the fraction \frac{-45}{57} to lowest terms by extracting and canceling out 3.
2x=-1+\frac{15}{19}
Add \frac{15}{19} to both sides.
2x=-\frac{19}{19}+\frac{15}{19}
Convert -1 to fraction -\frac{19}{19}.
2x=\frac{-19+15}{19}
Since -\frac{19}{19} and \frac{15}{19} have the same denominator, add them by adding their numerators.
2x=-\frac{4}{19}
Add -19 and 15 to get -4.
x=\frac{-\frac{4}{19}}{2}
Divide both sides by 2.
x=\frac{-4}{19\times 2}
Express \frac{-\frac{4}{19}}{2} as a single fraction.
x=\frac{-4}{38}
Multiply 19 and 2 to get 38.
x=-\frac{2}{19}
Reduce the fraction \frac{-4}{38} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}