Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+8x^{2}-3+4x
Multiply 2 and 2 to get 4.
6x+8x^{2}-3
Combine 2x and 4x to get 6x.
factor(2x+8x^{2}-3+4x)
Multiply 2 and 2 to get 4.
factor(6x+8x^{2}-3)
Combine 2x and 4x to get 6x.
8x^{2}+6x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 8\left(-3\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 8\left(-3\right)}}{2\times 8}
Square 6.
x=\frac{-6±\sqrt{36-32\left(-3\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-6±\sqrt{36+96}}{2\times 8}
Multiply -32 times -3.
x=\frac{-6±\sqrt{132}}{2\times 8}
Add 36 to 96.
x=\frac{-6±2\sqrt{33}}{2\times 8}
Take the square root of 132.
x=\frac{-6±2\sqrt{33}}{16}
Multiply 2 times 8.
x=\frac{2\sqrt{33}-6}{16}
Now solve the equation x=\frac{-6±2\sqrt{33}}{16} when ± is plus. Add -6 to 2\sqrt{33}.
x=\frac{\sqrt{33}-3}{8}
Divide -6+2\sqrt{33} by 16.
x=\frac{-2\sqrt{33}-6}{16}
Now solve the equation x=\frac{-6±2\sqrt{33}}{16} when ± is minus. Subtract 2\sqrt{33} from -6.
x=\frac{-\sqrt{33}-3}{8}
Divide -6-2\sqrt{33} by 16.
8x^{2}+6x-3=8\left(x-\frac{\sqrt{33}-3}{8}\right)\left(x-\frac{-\sqrt{33}-3}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{33}}{8} for x_{1} and \frac{-3-\sqrt{33}}{8} for x_{2}.