Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+6=\frac{1}{3}\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x+6=\frac{1}{3}x^{2}-2x+3
Use the distributive property to multiply \frac{1}{3} by x^{2}-6x+9.
2x+6-\frac{1}{3}x^{2}=-2x+3
Subtract \frac{1}{3}x^{2} from both sides.
2x+6-\frac{1}{3}x^{2}+2x=3
Add 2x to both sides.
4x+6-\frac{1}{3}x^{2}=3
Combine 2x and 2x to get 4x.
4x+6-\frac{1}{3}x^{2}-3=0
Subtract 3 from both sides.
4x+3-\frac{1}{3}x^{2}=0
Subtract 3 from 6 to get 3.
-\frac{1}{3}x^{2}+4x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{3}\right)\times 3}}{2\left(-\frac{1}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{3} for a, 4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{3}\right)\times 3}}{2\left(-\frac{1}{3}\right)}
Square 4.
x=\frac{-4±\sqrt{16+\frac{4}{3}\times 3}}{2\left(-\frac{1}{3}\right)}
Multiply -4 times -\frac{1}{3}.
x=\frac{-4±\sqrt{16+4}}{2\left(-\frac{1}{3}\right)}
Multiply \frac{4}{3} times 3.
x=\frac{-4±\sqrt{20}}{2\left(-\frac{1}{3}\right)}
Add 16 to 4.
x=\frac{-4±2\sqrt{5}}{2\left(-\frac{1}{3}\right)}
Take the square root of 20.
x=\frac{-4±2\sqrt{5}}{-\frac{2}{3}}
Multiply 2 times -\frac{1}{3}.
x=\frac{2\sqrt{5}-4}{-\frac{2}{3}}
Now solve the equation x=\frac{-4±2\sqrt{5}}{-\frac{2}{3}} when ± is plus. Add -4 to 2\sqrt{5}.
x=6-3\sqrt{5}
Divide -4+2\sqrt{5} by -\frac{2}{3} by multiplying -4+2\sqrt{5} by the reciprocal of -\frac{2}{3}.
x=\frac{-2\sqrt{5}-4}{-\frac{2}{3}}
Now solve the equation x=\frac{-4±2\sqrt{5}}{-\frac{2}{3}} when ± is minus. Subtract 2\sqrt{5} from -4.
x=3\sqrt{5}+6
Divide -4-2\sqrt{5} by -\frac{2}{3} by multiplying -4-2\sqrt{5} by the reciprocal of -\frac{2}{3}.
x=6-3\sqrt{5} x=3\sqrt{5}+6
The equation is now solved.
2x+6=\frac{1}{3}\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x+6=\frac{1}{3}x^{2}-2x+3
Use the distributive property to multiply \frac{1}{3} by x^{2}-6x+9.
2x+6-\frac{1}{3}x^{2}=-2x+3
Subtract \frac{1}{3}x^{2} from both sides.
2x+6-\frac{1}{3}x^{2}+2x=3
Add 2x to both sides.
4x+6-\frac{1}{3}x^{2}=3
Combine 2x and 2x to get 4x.
4x-\frac{1}{3}x^{2}=3-6
Subtract 6 from both sides.
4x-\frac{1}{3}x^{2}=-3
Subtract 6 from 3 to get -3.
-\frac{1}{3}x^{2}+4x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{3}x^{2}+4x}{-\frac{1}{3}}=-\frac{3}{-\frac{1}{3}}
Multiply both sides by -3.
x^{2}+\frac{4}{-\frac{1}{3}}x=-\frac{3}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
x^{2}-12x=-\frac{3}{-\frac{1}{3}}
Divide 4 by -\frac{1}{3} by multiplying 4 by the reciprocal of -\frac{1}{3}.
x^{2}-12x=9
Divide -3 by -\frac{1}{3} by multiplying -3 by the reciprocal of -\frac{1}{3}.
x^{2}-12x+\left(-6\right)^{2}=9+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=9+36
Square -6.
x^{2}-12x+36=45
Add 9 to 36.
\left(x-6\right)^{2}=45
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{45}
Take the square root of both sides of the equation.
x-6=3\sqrt{5} x-6=-3\sqrt{5}
Simplify.
x=3\sqrt{5}+6 x=6-3\sqrt{5}
Add 6 to both sides of the equation.